Push-Button Entanglement: Scientists Achieve Reliable Quantum Entanglement Between Resting and Flying Qubits – The Quantum Insider
Insider Brief
PRESS RELEASE Entanglement, Einsteins spooky action at a distance, today is THE tool of quantum information science. It is the essential resource for quantum computers and used to transmit quantum information in a future quantum network. But it is highly sensitive and it is an enormous challenge to entangle resting quantum bits (qubits) with flying qubits in the form of photons at the push of a button.
However, a team led by Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics in Garching, Germany, has now succeeded in doing exactly that with atoms connected in parallel. The atoms are sandwiched between two almost perfect mirrors. This setup guarantees reliable interaction with photons as flying qubits a technique pioneered by Gerhard Rempe. Using optical tweezers, the team was able to individually control up to six atoms and entangle each with a photon.
Using a multiplexing technique, the scientists demonstrated an atom-photon entanglement generation with almost 100 percent efficiency, a groundbreaking achievement for distributing entanglement over a quantum network. The work is published today in the journal Science.
Interfaces between resting qubits and flying qubits come into play whenever quantum information needs to be transmitted over long distances.
One aspect is the communication of quantum information over long distances in a future quantum internet, explains Emanuele Distante, who supervised the experiment as a postdoctoral researcher, and is now a researcher at ICFO in Barcelona: The second aspect is the goal of connecting many qubits in a distributed network to form a more powerful quantum computer. Both applications require efficient interfaces between qubits at rest and qubits in motion. This is why many groups around the world are feverishly researching quantum mechanical light-matter interfaces.
Several different technical approaches are being pursued.
Gerhard Rempe and his team in Garching have been working for many years on a method that uses ultracold rubidium atoms trapped between two almost perfect mirrors as an optical resonator.
The focus is on a future quantum internet.
This approach has an inherent advantage because it allows a trapped atom to interact highly efficiently with a photon, which bounces back and forth between the two mirrors about twenty thousand times like a ping-pong ball. Whats more, because one of the two mirrors is slightly more transparent than the other, the photon leaves in a precisely predetermined direction. This means that it is not lost, but can be reliably coupled into an optical fiber. If this photon is entangled with the atom using a specific protocol of laser pulses, this entanglement is maintained as the photon travels.
Multiplexing to overcome transmission losses
In 2012, the Garching team succeeded in entangling an atom in one resonator with a second atom in another resonator via photon radio through a 60-metre-long glass fiber. With the help of the transmitted photon, they formed an extended entangled quantum object from the two atoms. However, the photon must not get lost in the glass fiber along the way, and this is precisely the problem with a longer journey. The solution, at least for medium distances of a few kilometers, is called multiplexing. Multiplexing is a standard method used in classical information technology to make transmission more robust. Think of it as a radio link through a noisy area: If you send the radio signal along several parallel channels, the probability that it will reach the receiver via at least one channel increases.
Without multiplexing, even our current Internet would not work, explains Distante: But transferring this method to quantum information systems is a particular challenge.
Multiplexing is not only interesting for more secure transmission over longer distances in a future quantum internet, but also for a local quantum network. One example is the distributed quantum computer, which consists of several smaller processors that are connected via short optical fibers. Its resting qubits could be entangled more reliably by multiplexing with flying qubits to form a distributed, more powerful quantum computer.
Laser tweezers for handling atoms
The challenge for the Garching team was to load several atoms into a resonator as resting qubits and to address them individually. Only if the position of the atoms is known can they be entangled in parallel with one photon each in order to achieve multiplexing. Hence, the team developed a technique for inserting optical tweezers into the narrow resonator.
The mirrors are only about half a millimeter apart, explains Lukas Hartung, PhD student and first author of the paper in Science.
The optical tweezers consist of fine laser beams that are strong enough to capture an atom in their focus and move it precisely to the desired position. Using up to six such tweezers, the team was able to arrange a corresponding number of floating rubidium atoms in the cavity to form a neat qubit lattice. Since the atoms can easily remain in the trap for a minute a little eternity in quantum physics they could easily be entangled with one photon each. This works almost one hundred percent of the time, says Distante, emphasizing the key advantage of this technique: the entanglement distribution works almost deterministically, i.e. at the push of a button.
Scalable to considerably more qubits
In order to achieve this, the team used a microscope lens objective positioned above the resonator with micrometer precision in order to focus the individual beams of the light tweezers into the narrow mirror cabinet. The tweezer beams are generated via so-called acousto-optical deflectors and can therefore be controlled individually. Precise adjustment of the laser tweezers in the optics requires a great deal of dexterity. Mastering this challenge was the cornerstone for the success of the experiment, summarizes Stephan Welte, who helped develop the technology as part of the team and is now a researcher at ETH Zurich.
The current experiment gives hope that the method can be scaled up to considerably more qubits without losses: the team estimates that up to 200 atoms could be controlled in such a resonator. As these quantum bits can be controlled very well in the resonator, this would be a huge step forward. And as the interface even feeds one hundred percent of the entangled photons into the optical fiber, a network of many resonators, each with 200 atoms as resting qubits, would be thinkable. This would result in a powerful quantum computer. It is still a dream of the future. But with the laser tweezers, the Garching team now has a considerable part of this future firmly under control.
See more here:
Push-Button Entanglement: Scientists Achieve Reliable Quantum Entanglement Between Resting and Flying Qubits - The Quantum Insider
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]
- Quantum Computing is a cross industry revolution, and we want to be part of it - CTech - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Stocks Fall. Here's A Look At Upcoming News Events. - Investor's Business Daily - April 1st, 2025 [April 1st, 2025]
- Honeywell May Take Quantinuum Public in Next 2 Years. Its a Quantum Thing. - Barron's - April 1st, 2025 [April 1st, 2025]
- The 6 different types of quantum computing technology - TechTarget - April 1st, 2025 [April 1st, 2025]
- Nvidia to Open Quantum Computing Research Center in Boston This Year in a Landmark for Regions Tech Sector - The Harvard Crimson - April 1st, 2025 [April 1st, 2025]
- Quantum Threats Are HereWhy the Next Cybersecurity Boom May Already Be Underway - Baystreet.ca - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco Validate Quantum and AI Workflow Towards Generative Drug Discovery - The Quantum Insider - April 1st, 2025 [April 1st, 2025]
- The High Cost of Quantum Randomness Is Dropping - Quanta Magazine - April 1st, 2025 [April 1st, 2025]
- Beyond encryption: Why quantum computing might be more of a science boom than a cybersecurity bust - oodaloop.com - April 1st, 2025 [April 1st, 2025]
- NVIDIA (NVDA): One of the Best Quantum Computing Stocks to Buy Right Now? - Yahoo Finance - March 18th, 2025 [March 18th, 2025]
- I work at a leading quantum lab: Here are the qualifications recruiters in the field are looking for - Business Insider - March 18th, 2025 [March 18th, 2025]
- 5 wild things quantum computing could unlock now that Big Tech believes a breakthrough is within reach - Yahoo - March 18th, 2025 [March 18th, 2025]
- Controversy erupts over claims Microsoft invented a new state of matter - Salon - March 18th, 2025 [March 18th, 2025]
- Chinese quantum processor is 1 quadrillion times faster than the best supercomputer and it rivals Google's breakthrough Willow chip - Livescience.com - March 18th, 2025 [March 18th, 2025]
- IQM Quantum wants to be the European answer to Google and IBM - Sifted - March 18th, 2025 [March 18th, 2025]
- Twisting atomically thin materials could advance quantum computers - University of Rochester - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Stock Hits $11: Heres What This Top Analyst Predicts Ahead - TipRanks - March 18th, 2025 [March 18th, 2025]
- A Computer Has Achieved "Quantum Supremacy" On Real-World Problem For First Time, Company Claims - IFLScience - March 18th, 2025 [March 18th, 2025]
- INVESTOR ALERT: Pomerantz Law Firm Announces the Filing of a Class Action Against Quantum Computing Inc. and Certain Officers - QUBT - PR Newswire - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Sets Benchmark with New Computing Advance - News and Statistics - IndexBox, Inc. - March 18th, 2025 [March 18th, 2025]
- Rigettis Rally Hits a Bump Are Insider Sales a Red Flag? - Wall Street Pit - March 18th, 2025 [March 18th, 2025]
- Quantum AI: What Is It and How Does It Work? - CNET - March 18th, 2025 [March 18th, 2025]
- D-Wave Shares Jump 46.9% on Friday - Should You Buy QBTS Stock? - TradingView - March 18th, 2025 [March 18th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims Breakthrough. Quantum Computing Stocks Gain. - Investor's Business Daily - March 13th, 2025 [March 13th, 2025]
- Physicists Just Witnessed a Quantum Phase Flip and Its More Mind-Bending Than Expected - SciTechDaily - March 13th, 2025 [March 13th, 2025]
- Beyond Classical: D-Wave First to Demonstrate Quantum Supremacy on Useful, Real-World Problem - Business Wire - March 13th, 2025 [March 13th, 2025]
- What is quantum computing and how it could change the tech world - Yahoo Finance - March 13th, 2025 [March 13th, 2025]
- Quantum Computing Giant IonQ Is Down More Than 60% From its All-Time High. Should You Buy The Dip? - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Deep Dive: A Look at The Quantum Advantage Findings -- And The Questions That Remain - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- D-Wave claims to have achieved quantum supremacy at last, but others disagree - SiliconANGLE News - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims It Achieves Quantum Supremacy. What the Breakthrough Means for Quantum Computing. - Barron's - March 13th, 2025 [March 13th, 2025]
- D-Wave Posts Wider-Than-Expected Loss. Why the Stock Is Rising After Earnings. - Barron's - March 13th, 2025 [March 13th, 2025]
- Nu Quantum Partners With The University of Sussex, Cisco, and Infineon to Scale Trapped Ion Quantum Computers - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- IonQ Could Be a Quantum Computing Powerhouse, but Is It a Buy Right Now? - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Quantum Inc. Reports Fourth Quarter and Year-End 2024 Results - TradingView - March 13th, 2025 [March 13th, 2025]
- Hybrid Quantum Workflow Moves Toward Real-World Applications - IoT World Today - March 13th, 2025 [March 13th, 2025]
- As NVIDIAs Quantum Day Nears, Analysts Suggest Event is More Than a Gesture - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- D-Wave Posts Wider-Than-Expected Loss. Why the Stock Is Rising Anyway. - MSN - March 13th, 2025 [March 13th, 2025]
- Recent Breakthroughs Accelerate The Race For Quantum Computing - Forbes - March 13th, 2025 [March 13th, 2025]
- An operating system for executing applications on quantum network nodes - Nature.com - March 13th, 2025 [March 13th, 2025]
- D-Wave Reports Quantum Advantage in Materials Simulation Study - HPCwire - March 13th, 2025 [March 13th, 2025]
- Experts Weigh in on Microsofts Topological Qubit Claim - Physics - March 13th, 2025 [March 13th, 2025]
- Quantum Computing Inc. To Attend 37th Annual ROTH Conference - PR Newswire - March 13th, 2025 [March 13th, 2025]
- Quantum leap: Passwords in the new era of computing security - BleepingComputer - March 13th, 2025 [March 13th, 2025]
- Quantum computing will reach its inflection point in 2029: How investors should prepare - Finextra - March 13th, 2025 [March 13th, 2025]
- Quantum computing - Unlocking science, and maybe your bank account - Home Team Science and Technology Agency - March 13th, 2025 [March 13th, 2025]
- SXSW 2025 live coverage: The potential of quantum computing, Ireland's prime minister makes a splash, and a Metallica concert in Apple Vision Pro -... - March 13th, 2025 [March 13th, 2025]
- QuamCore Emerges From Stealth With $9 Million in Seed Funding to Build Worlds First Scalable 1 million Qubit Quantum Computer - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- QuamCore Emerges with $9M Seed Funding to Build Scalable Million-Qubit Quantum Computer - Quantum Computing Report - March 13th, 2025 [March 13th, 2025]
- QuamCore emerges from stealth with $9 million in Seed funding to build a 1 million qubit quantum computer - Scientific Computing World - March 13th, 2025 [March 13th, 2025]
- D-Wave says it achieved quantum supremacy using its computer - Fast Company - March 13th, 2025 [March 13th, 2025]
- D-Waves Annealing Quantum Computer Just Beat a Supercomputer Heres Why It Matters - Wall Street Pit - March 13th, 2025 [March 13th, 2025]
- Recently, a series of quantum computer-themed exchange-traded funds (ETFs) have been released in the.. - - March 13th, 2025 [March 13th, 2025]
- China unveils quantum computer thats one quadrillion times faster than existing supercomputers - Yahoo Finance UK - March 7th, 2025 [March 7th, 2025]
- China unveils quantum computer that could spell new era of processors - The Independent - March 5th, 2025 [March 5th, 2025]
- Startup PsiQuantum says it is making millions of quantum computing chips - Reuters - March 1st, 2025 [March 1st, 2025]
- A quantum computing startup says it is already making millions of light-powered chips - The Conversation - March 1st, 2025 [March 1st, 2025]
- Quantum Breakthrough: Microsoft and Purdue Unlock the Future of Topological Qubits - SciTechDaily - March 1st, 2025 [March 1st, 2025]
- Interested in Quantum Computing Investing? Here Are 4 Fantastic Picks to Maximize Your Odds of Picking a Winner - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- If I Could Only Buy 1 Quantum Computing Stock, This Would Be It - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- Amazon unveils quantum chip, aiming to shave years off development time - Reuters - March 1st, 2025 [March 1st, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - March 1st, 2025 [March 1st, 2025]
- Microsoft makes quantum computing breakthrough - Drexel University The Triangle Online - March 1st, 2025 [March 1st, 2025]
- Google, Microsoft, and now Amazon: The quantum computing race is heating up - Quartz - March 1st, 2025 [March 1st, 2025]
- Groundbreaking qubit technology reduces errors in quantum computing - The Brighter Side of News - March 1st, 2025 [March 1st, 2025]
- Fortanix Tackles Quantum Computing Threats With New Algorithms - Dark Reading - March 1st, 2025 [March 1st, 2025]