Pushing the Limits of Quantum Sensing with Variational Quantum Circuits – Physics
December 6, 2021• Physics 14, 172
Variational quantum algorithms could help researchers improve the performance of optical atomic clocks and of other quantum-metrology schemes.
D. Vasilyev/University of Innsbruck
D. Vasilyev/University of Innsbruck
Since it was first introduced in 1949, Ramsey interferometry has had an exciting history. The method was at the center of a series of beautiful experiments performed by Serge Haroches group that were recognized by the 2012 Nobel Prize in Physics [1, 2]. The prize was given for methods that enable the measurement and manipulation of individual quantum systems. Haroches group used individual atoms to sense the properties of photons inside an optical cavity. Building on these ideas, researchers have reported a new theoretical study that points at a promising way to push the limits of quantum sensing. Raphael Kaubruegger at the University of Innsbruck, Austria, and his colleagues employ so-called variational quantum circuits to optimize the sensitivity of an atomic sensor based on entangled atoms [4]. The result is a sensor that, with surprisingly modest quantum resources, should outperform those based on standard Ramsey interferometry.
We often think of photons as probes to study atoms, but Ramsey interferometry flips the script and uses atoms to study photons. This type of interferometry first puts an atom in a superposition of electronic energy levels and then passes the atom through an optical cavity. As a result, the quantum superposition accumulates a measurable phase shift that depends on the properties of the photons in the cavity. The experiments by Haroches group involved passing atoms through an optical cavity one at a time in order to nondestructively detect the number of photons. More photons in the cavity lead to a larger phase shift in the atomic wave function. In such experiments, each atom can be regarded as an individual entity. In other words, each atom is prepared in an uncorrelated product statea state that can be described independently of every other atoms state.
Kaubruegger and colleagues propose to go a step further by entangling 64 atoms and using them to make an even better sensor for Ramsey interferometry. They demonstrate the effectiveness of their approach by considering an optical atomic clock, in which Ramsey-interferometry measurements of the atomic ensembles phase are used to correct the clocks laser frequency (Fig. 1). Like Haroches group, the researchers manipulate a single quantum system, but one made of 64 atoms. Rather than using atoms in the product state, they propose to prepare these atoms in an entangled state, in which each atoms state cannot be fully described independently of the other atoms. They show that performing Ramsey interferometry using entangled states gives a big boost to the sensitivity of the phase sensor, beating the standard quantum limit that applies when sensing using uncorrelated atoms.
Their proposal harnesses a key innovation to prepare the entangled state. Entangled atomic sensors have been employed before, and a standard approach involves using so-called Greenberger-Horne-Zeilinger (GHZ) states. Kaubruegger and colleagues note that these states are only optimal for sensing under certain assumptions regarding prior knowledge of the phase-shift value. This limitation opened the door for the researchers to improve upon and outperform GHZ states by taking advantage of one of todays hottest concepts in quantum computing: variational quantum circuits. These circuits, which have a set of free parameters, replace the fixed quantum circuits used to implement quantum algorithms such as Shors algorithm for factoring or the Harrow-Hassidim-Lloyd algorithm for solving linear systems. Variational quantum circuits have internal parameters (such as rotation angles about certain Bloch sphere axes) that one optimizes over to perform a given task. Kaubruegger and colleagues propose to use two sets of variational quantum circuits to prepare the entangled state for sensing and to measure the parameter that they want to sense (that is, the optical phase). They call these circuits the entangling and decoding circuits, respectively (Fig. 2).
Achieving good performance with variational quantum circuits is challenging, since the parameters can be hard to optimize and one does not know ahead of time how deep of a circuit one needs, that is, how many quantum gates are required. Kaubruegger and colleagues find that excellent performance can be achieved with shallow circuits composed using the quantum resources inherently available in Ramsey interferometry and atomic-clock platforms. With only a few layers of their quantum circuits, they not only beat the standard quantum limit (which applies to measurements made using uncorrelated atoms) but also get very close to the Heisenberg limitthe ultimate limit for the sensitivity that one can achieve with a quantum system and, therefore, the ultimate limit of a quantum sensor. Here, a layer refers to the building block of the variational quantum circuit: more layers are needed to do a more comprehensive search over the Hilbert space, whereas fewer layers can only search over a smaller subspace. The fact that good performance requires only a few layers suggests that states that are beneficial to quantum metrology are relatively easy to find. This is an exciting possibility that should stimulate more investigation.
This new work is important because it brings together two different communities: the quantum sensing community and the variational quantum algorithm community. While variational quantum algorithms are getting major attention for quantum computing applications, it is rare for them to appear in an atomic experimental setting or in a sensing setting. The beautiful observation that variational algorithms could work in a realistic sensing application should inspire many experimentalists to think about optimizing their setups with variational quantum circuits, regardless of whether they involve atoms, light, spins, or superconductors. We need cross fertilization between quantum experimentalists and quantum computer scientists, and this work gives an inspiring guide for how such cross fertilization can be brought about.
Patrick Coles is a staff scientist at Los Alamos National Laboratory (LANL), New Mexico. He leads the near-term quantum computing research efforts at LANL, focusing on variational quantum algorithms and quantum machine learning. He also co-organizes LANL's quantum computing summer school. He has switched fields many times: He received his master's degree in biochemistry from the University of Cambridge, UK, as a Churchill Scholar and then did his Ph.D. in chemical engineering at the University of California, Berkeley. In contrast, his three postdocs (at Carnegie Mellon University, Pennsylvania; the National University of Singapore; and the University of Waterloo, Canada) were focused on all things quantum, including quantum foundations, quantum optics, quantum information theory, quantum cryptography, and (his current field) quantum computing.
Read the original:
Pushing the Limits of Quantum Sensing with Variational Quantum Circuits - Physics
- Quantum Computing 2025 Is it Turning the Corner? - HPCwire - January 1st, 2025 [January 1st, 2025]
- IBM will release the largest ever quantum computer in 2025 - New Scientist - January 1st, 2025 [January 1st, 2025]
- Betting on the Quantum Buzz: Righetti, D-Wave, and QUBTs Option Explosion - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- "Impossible" quantum teleportation achieved on normal internet cables - Earth.com - January 1st, 2025 [January 1st, 2025]
- It Takes A Village: Top 10 Quantum Partnerships of 2024 - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- TQIs 2025 Predictions For The Quantum Industry - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Future outlook: The impact of quantum computing on financial services - London Daily News - January 1st, 2025 [January 1st, 2025]
- Quantum computing is finally here. But what is it? - Crain's Chicago Business - January 1st, 2025 [January 1st, 2025]
- Google's quantum breakthrough is 'truly remarkable' - but there's more to do - ZDNet - January 1st, 2025 [January 1st, 2025]
- 2025 is the year of quantum computing, expert says - MSN - January 1st, 2025 [January 1st, 2025]
- The Years Biggest Breakthroughs in Science and Tech (Feat.: OK, but Seriously, What Is Quantum Computing?) - The Ringer - January 1st, 2025 [January 1st, 2025]
- Circuit-Knitting Technique Sews Up Nearly 8-Fold Reduction in Quantum Resource Overhead - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Three New Error Correction Papers for the End of the Year - Quantum Computing Report - January 1st, 2025 [January 1st, 2025]
- The Quantum Race Heats Up! Is It Time to Bet on Quantum Computing Giants? - Jomfruland.net - January 1st, 2025 [January 1st, 2025]
- This Cryptographer Helps Quantum-Proof the Internet - IEEE Spectrum - January 1st, 2025 [January 1st, 2025]
- Why IBM Stock Offers a Strategic Edge in the Quantum Computing Race - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- Quantum-Si Isn't A Quantum Computing Company, And Shares Are Overvalued (NASDAQ:QSI) - Seeking Alpha - January 1st, 2025 [January 1st, 2025]
- MicroAlgo Inc. Announces the Launch of FULL Adder Operation Quantum Algorithm Technology Based on CPU Registers in Quantum Gate Computing - Yahoo... - January 1st, 2025 [January 1st, 2025]
- Quantum Breakthrough or Just Hype? Discover the Truth. - Jomfruland.net - January 1st, 2025 [January 1st, 2025]
- Google's quantum computer performs calculation in 5 minutes that would take longer than the universe's existence for a supercomputer - Warp News - December 25th, 2024 [December 25th, 2024]
- IBM to build new quantum computer in state-backed technology park - Daily Herald - December 20th, 2024 [December 20th, 2024]
- IBM and State of Illinois to Build National Quantum Algorithm Center in Chicago with Universities and Industries - IBM Newsroom - December 14th, 2024 [December 14th, 2024]
- Google's Quantum Chip Can Do in 5 Minutes What Would Take Other Computers 10 Septillion Years - PCMag - December 14th, 2024 [December 14th, 2024]
- Googles Willow Chip Has Quantum Developers Weeping With Joy - TechNewsWorld - December 14th, 2024 [December 14th, 2024]
- Google says its new chip may do computation in another universe - The Stack - December 14th, 2024 [December 14th, 2024]
- Google's Willow quantum chip breakthrough is hidden behind a questionable benchmark - Engadget - December 14th, 2024 [December 14th, 2024]
- Google Unveils the 105 Qubit Willow Chip and Demonstrates New Levels of RCS Benchmark Performance and Quantum Error Correction Below the Threshold -... - December 14th, 2024 [December 14th, 2024]
- Will Willow, Google's quantum computing chip, put bitcoin at risk? Here's what you should know - The Economic Times - December 14th, 2024 [December 14th, 2024]
- Google Just Made a Breakthrough in Quantum Computing With Its New Chip - Robb Report - December 14th, 2024 [December 14th, 2024]
- Why Googles Quantum Computer Chip Willow Is A Game Changer - Forbes - December 14th, 2024 [December 14th, 2024]
- Google has unveiled a new quantum computer chip that cracks a '30-year challenge in the field' - Business Insider - December 14th, 2024 [December 14th, 2024]
- Google hits a major milestone: A quantum computer performs 47 years' worth of calculations in seconds - Belles and Gals - December 14th, 2024 [December 14th, 2024]
- China's 504-qubit quantum computer chip marks a new domestic record will be globally available via the cloud - Tom's Hardware - December 14th, 2024 [December 14th, 2024]
- Google's WIllow chip is a big leap towards usable quantum computing but its claim of beating a classical computer by a 'septillion years' is... - December 14th, 2024 [December 14th, 2024]
- Colombias First Quantum Computer: Advancing Education, Research, and Technological Innovation - The Quantum Insider - December 5th, 2024 [December 5th, 2024]
- 100-Qubit Quantum Computer Delivered to Boost European Infrastructure - IoT World Today - December 5th, 2024 [December 5th, 2024]
- Pasqal 100-Qubit Quantum Computer Shipped to Jlich Supercomputing Centre - insideHPC - December 5th, 2024 [December 5th, 2024]
- From sand to superposition: A key step toward a powerful silicon quantum computer - Phys.org - November 28th, 2024 [November 28th, 2024]
- Could Rigetti Computing Become the Next Nvidia? - Yahoo Finance - November 28th, 2024 [November 28th, 2024]
- Computing at the Edge of Reality - Sponsor Content - Google - The Atlantic - November 28th, 2024 [November 28th, 2024]
- Are IONQ, FORM, and IBM Stocks Buys Ahead of the Quantum Revolution? - Yahoo Finance - November 28th, 2024 [November 28th, 2024]
- Telefonica Germany and AWS Collaborate to Test Quantum Technologies for Mobile Networks and 6G Development - The Quantum Insider - November 28th, 2024 [November 28th, 2024]
- Quantum Thanksgiving -- Why You Should Give Thanks (ThanQs?) For Quantum Mechanics During This Season of Gratitude - The Quantum Insider - November 28th, 2024 [November 28th, 2024]
- IonQ to Highlight Recent Quantum Innovations in Live Webinar, "IonQ's Full-Stack Quantum Innovation" - Business Wire - November 28th, 2024 [November 28th, 2024]
- Nobel Prize-Winning AI Breakthrough Paves the Way for Quantum Chemistry - SciTechDaily - November 28th, 2024 [November 28th, 2024]
- The Rise of Quantum Technology: Key Startups and Companies - Bizz Buzz - November 28th, 2024 [November 28th, 2024]
- Quantum Computing: Navigating the path to Q-Day through standards - TechNative - November 28th, 2024 [November 28th, 2024]
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]