Quantum chemistry – Wikipedia
Chemistry based on quantum physics
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics.
Chemists rely heavily on spectroscopy through which information regarding the quantization of energy on a molecular scale can be obtained. Common methods are infra-red (IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning probe microscopy. Quantum chemistry may be applied to the prediction and verification of spectroscopic data as well as other experimental data.
Many quantum chemistry studies are focused on the electronic ground state and excited states of individual atoms and molecules as well as the study of reaction pathways and transition states that occur during chemical reactions. Spectroscopic properties may also be predicted. Typically, such studies assume the electronic wave function is adiabatically parameterized by the nuclear positions (i.e., the BornOppenheimer approximation). A wide variety of approaches are used, including semi-empirical methods, density functional theory, Hartree-Fock calculations, quantum Monte Carlo methods, and coupled cluster methods.
Understanding electronic structure and molecular dynamics through the development of computational solutions to the Schrdinger equation is a central goal of quantum chemistry. Progress in the field depends on overcoming several challenges, including the need to increase the accuracy of the results for small molecular systems, and to also increase the size of large molecules that can be realistically subjected to computation, which is limited by scaling considerations the computation time increases as a power of the number of atoms.
Some view the birth of quantum chemistry as starting with the discovery of the Schrdinger equation and its application to the hydrogen atom in 1926.[citation needed] However, the 1927 article of Walter Heitler (19041981) and Fritz London, is often recognized as the first milestone in the history of quantum chemistry. This is the first application of quantum mechanics to the diatomic hydrogen molecule, and thus to the phenomenon of the chemical bond. In the following years much progress was accomplished by Robert S. Mulliken, Max Born, J. Robert Oppenheimer, Linus Pauling, Erich Hckel, Douglas Hartree, Vladimir Fock, to cite a few. The history of quantum chemistry also goes through the 1838 discovery of cathode rays by Michael Faraday, the 1859 statement of the black-body radiation problem by Gustav Kirchhoff, the 1877 suggestion by Ludwig Boltzmann that the energy states of a physical system could be discrete, and the 1900 quantum hypothesis by Max Planck that any energy radiating atomic system can theoretically be divided into a number of discrete energy elements such that each of these energy elements is proportional to the frequency with which they each individually radiate energy and a numerical value called Planck's constant. Then, in 1905, to explain the photoelectric effect (1839), i.e., that shining light on certain materials can function to eject electrons from the material, Albert Einstein postulated, based on Planck's quantum hypothesis, that light itself consists of individual quantum particles, which later came to be called photons (1926). In the years to follow, this theoretical basis slowly began to be applied to chemical structure, reactivity, and bonding. Probably the greatest contribution to the field was made by Linus Pauling.[citation needed]
The first step in solving a quantum chemical problem is usually solving the Schrdinger equation (or Dirac equation in relativistic quantum chemistry) with the electronic molecular Hamiltonian. This is called determining the electronic structure of the molecule. It can be said that the electronic structure of a molecule or crystal implies essentially its chemical properties. An exact solution for the Schrdinger equation can only be obtained for the hydrogen atom (though exact solutions for the bound state energies of the hydrogen molecular ion have been identified in terms of the generalized Lambert W function). Since all other atomic, or molecular systems, involve the motions of three or more "particles", their Schrdinger equations cannot be solved exactly and so approximate solutions must be sought.
Although the mathematical basis of quantum chemistry had been laid by Schrdinger in 1926, it is generally accepted that the first true calculation in quantum chemistry was that of the German physicists Walter Heitler and Fritz London on the hydrogen (H2) molecule in 1927.[citation needed] Heitler and London's method was extended by the American theoretical physicist John C. Slater and the American theoretical chemist Linus Pauling to become the valence-bond (VB) [or HeitlerLondonSlaterPauling (HLSP)] method. In this method, attention is primarily devoted to the pairwise interactions between atoms, and this method therefore correlates closely with classical chemists' drawings of bonds. It focuses on how the atomic orbitals of an atom combine to give individual chemical bonds when a molecule is formed, incorporating the two key concepts of orbital hybridization and resonance.
An alternative approach was developed in 1929 by Friedrich Hund and Robert S. Mulliken, in which electrons are described by mathematical functions delocalized over an entire molecule. The HundMulliken approach or molecular orbital (MO) method is less intuitive to chemists, but has turned out capable of predicting spectroscopic properties better than the VB method. This approach is the conceptual basis of the HartreeFock method and further post HartreeFock methods.
The ThomasFermi model was developed independently by Thomas and Fermi in 1927. This was the first attempt to describe many-electron systems on the basis of electronic density instead of wave functions, although it was not very successful in the treatment of entire molecules. The method did provide the basis for what is now known as density functional theory (DFT). Modern day DFT uses the KohnSham method, where the density functional is split into four terms; the KohnSham kinetic energy, an external potential, exchange and correlation energies. A large part of the focus on developing DFT is on improving the exchange and correlation terms. Though this method is less developed than post HartreeFock methods, its significantly lower computational requirements (scaling typically no worse than n3 with respect to n basis functions, for the pure functionals) allow it to tackle larger polyatomic molecules and even macromolecules. This computational affordability and often comparable accuracy to MP2 and CCSD(T) (post-HartreeFock methods) has made it one of the most popular methods in computational chemistry.
A further step can consist of solving the Schrdinger equation with the total molecular Hamiltonian in order to study the motion of molecules. Direct solution of the Schrdinger equation is called quantum dynamics, whereas its solution within the semiclassical approximation is called semiclassical dynamics. Purely classical simulations of molecular motion are referred to as molecular dynamics (MD). Another approach to dynamics is a hybrid framework known as mixed quantum-classical dynamics; yet another hybrid framework uses the Feynman path integral formulation to add quantum corrections to molecular dynamics, which is called path integral molecular dynamics. Statistical approaches, using for example classical and quantum Monte Carlo methods, are also possible and are particularly useful for describing equilibrium distributions of states.
In adiabatic dynamics, interatomic interactions are represented by single scalar potentials called potential energy surfaces. This is the BornOppenheimer approximation introduced by Born and Oppenheimer in 1927. Pioneering applications of this in chemistry were performed by Rice and Ramsperger in 1927 and Kassel in 1928, and generalized into the RRKM theory in 1952 by Marcus who took the transition state theory developed by Eyring in 1935 into account. These methods enable simple estimates of unimolecular reaction rates from a few characteristics of the potential surface.
Non-adiabatic dynamics consists of taking the interaction between several coupled potential energy surface (corresponding to different electronic quantum states of the molecule). The coupling terms are called vibronic couplings. The pioneering work in this field was done by Stueckelberg, Landau, and Zener in the 1930s, in their work on what is now known as the LandauZener transition. Their formula allows the transition probability between two diabatic potential curves in the neighborhood of an avoided crossing to be calculated. Spin-forbidden reactions are one type of non-adiabatic reactions where at least one change in spin state occurs when progressing from reactant to product.
Read more:
Quantum chemistry - Wikipedia
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Foundry Opening - Yahoo Finance - November 2nd, 2024 [November 2nd, 2024]
- Where Will IonQ Be in 3 Years? - The Motley Fool - November 2nd, 2024 [November 2nd, 2024]
- In the Fight Against Noisy Quantum Computing, CVaR Proves a Worthy Opponent - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Riverlane CEO Asks: What Will We Do With Error-Corrected Quantum Computers? - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Gulf bets on a quantum computing leap - Arabian Gulf Business Insight - November 2nd, 2024 [November 2nd, 2024]
- Fully Operational Rigetti QPU Included in UKs Recently Opened National Quantum Computer Centre - GlobeNewswire - November 2nd, 2024 [November 2nd, 2024]
- Guest EditorialQuantum Computing: A Beacon of Transformation for the Oil and Gas Industry - Society of Petroleum Engineers (SPE) - November 2nd, 2024 [November 2nd, 2024]
- A Race to The End of Time - Brown Political Review - November 2nd, 2024 [November 2nd, 2024]
- Study observes a phase transition in magic of a quantum system with random circuits - Phys.org - November 2nd, 2024 [November 2nd, 2024]
- Securing tomorrow: What you should know about protecting data in the future - Clemson News - November 2nd, 2024 [November 2nd, 2024]
- Heres the paper no one read before declaring the demise of modern cryptography - Ars Technica - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Progress Towards Fault Tolerant Quantum Computing with Real-Time and Low Latency Error Correction on Rigetti QPU - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- NIST approves 14 new quantum encryption algorithms for standardization - Nextgov/FCW - November 2nd, 2024 [November 2nd, 2024]
- ORCA Computing Unveils The PT-2: Delivering Quantum-Enhanced Generative AI Capabilities - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- UK quantum computer cluster opens on site of Cold War atomic "holy of holies" - The Stack - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Announces Appointment of Two New Board Members - Business Wire - November 2nd, 2024 [November 2nd, 2024]
- IonQs Quantum Surge: Ride the Wave or Cash Out? - MarketBeat - November 2nd, 2024 [November 2nd, 2024]
- D-Wave Deemed Awardable Vendor for US Department of Defense Chief Digital and Artificial Intelligence Offices Tradewinds Solutions Marketplace -... - November 2nd, 2024 [November 2nd, 2024]
- Challenges and opportunities in quantum optimization - Nature.com - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - PR Newswire - November 2nd, 2024 [November 2nd, 2024]
- Bridging Cities with Quantum Links in Pursuit of the Quantum Internet - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Quantum Computing, Inc. Announces Strategic Partnerships and Pre-Orders Ahead of 2025 Quantum Photonic Chip Foundry Opening - StockTitan - November 2nd, 2024 [November 2nd, 2024]
- UK's Newly Opened National Quantum Computing Centre Designed to Push The Boundaries of What is Possible With Quantum - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - Livescience.com - October 24th, 2024 [October 24th, 2024]
- No, China Isnt a Decade Ahead of The U.S. in Quantum Computing (Probably) - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - StockTitan - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - Quantisnow - October 24th, 2024 [October 24th, 2024]
- One Skyrmion to Rule Them All: Noise Resilience and Data Storage Solutions for Quantum Computing and Spintronics - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Plotting the inevitable rise of quantum computing - Business Weekly - October 24th, 2024 [October 24th, 2024]
- The Netherlands to host an EU quantum computer in Amsterdam - DutchNews.nl - October 24th, 2024 [October 24th, 2024]
- Qubits Manipulated on the Fly - Physics - October 24th, 2024 [October 24th, 2024]
- Quantum Computing, Inc. to Host Third Quarter 2024 Shareholder Call on Wednesday, November 6, 2024 - WV News - October 24th, 2024 [October 24th, 2024]
- Scientists build the smallest quantum computer in the world it works at room temperature and you can fit it on your desk - MSN - October 24th, 2024 [October 24th, 2024]
- Scalable Silicon Spin Qubits Achieve Over 99% Fidelity for Quantum Computing with CMOS Technology - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Multiverse Computing Expands to US with New San Francisco Office to Drive Quantum AI Adoption - HPCwire - October 24th, 2024 [October 24th, 2024]
- LUCI in The Surface Codes With Drop Outs: Google Quantum AI Researchers Report Framework Could Help Reduce Errors - The Quantum Insider - October 24th, 2024 [October 24th, 2024]
- Chinese scientists claim they broke RSA encryption with a quantum computer but there's a catch - Livescience.com - October 23rd, 2024 [October 23rd, 2024]
- Riverlanes Quantum Error Correction Report: Defining the Path to Fault-Tolerant Computing and the MegaQuOp Milestone - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computing, Inc. Enters Final Stage of Commissioning Quantum Photonic Chip Foundry in Tempe, Arizona - Yahoo Finance - October 23rd, 2024 [October 23rd, 2024]
- Why experts are warning businesses to prepare for quantum now or face critical cyber risks when it arrives - ITPro - October 23rd, 2024 [October 23rd, 2024]
- Quantum Computers Expected to Be Useful by 2026, Survey - IoT World Today - October 23rd, 2024 [October 23rd, 2024]
- ParTec AG and HZDR to Build AI Supercomputer Supporting Research in AI, Quantum Computing, and HPC - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- Pete Shadbolt on Tackling the Challenges of Quantum Computing & Its Future Impact on Everyday Life - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- How to build a quantum computer that's actually useful - Space Daily - October 23rd, 2024 [October 23rd, 2024]
- Quantum Algorithms for Faster Pattern Matching in Genomics and Text Processing, and Data-Intensive Applications - The Quantum Insider - October 23rd, 2024 [October 23rd, 2024]
- 2025 Tech Trends Report: New Insights on IT Investment in AI, Quantum Computing, and Cybersecurity Published by Info-Tech Research Group - PR Newswire - October 23rd, 2024 [October 23rd, 2024]
- Next Quantum Computer Comes To Netherlands - Mirage News - October 23rd, 2024 [October 23rd, 2024]