Quantum effects of D-Waves hardware boost its performance – Ars Technica
Enlarge / The D-Wave hardware is, quite literally, a black box.
D-Wave
Before we had developed the first qubit, theoreticians had done the work that showed that a sufficiently powerful gate-based quantum computer would be able to perform calculations that could not realistically be done on traditional computing hardware. All that is needed is to build hardware capable of implementing the theorists' work.
The situation was essentially reversed when it came to quantum annealing. D-Wave started building hardware that could perform quantum annealing without a strong theoretical understanding of how its performance would compare to standard computing hardware. And, for practical calculations, the hardware has sometimes been outperformed by more traditional algorithms.
On Wednesday, however, a team of researchers, some at D-Wave, others at academic institutions, is releasing a paper comparing its quantum annealer with different methods of simulating its behavior. The results show that actual hardware has a clear advantage over simulations, though there are two caveats: errors start to cause the hardware to deviate from ideal performance, and it's not clear how well this performance edge translates to practical calculations.
D-Wave's hardware consists of a collection of loops of superconducting wires. Current can circulate through the loops in either direction, with the direction providing a bit value. Each loop is also connected to several of its neighbors, allowing them to influence each other's behavior.
When properly configured, the system can behave as what's called a "spin glass," a physical system with complex behavior. A spin glass is easiest to think about as a grid of magnets, with each magnet influencing the behavior of its neighbors. When one magnet is in a given orientation (like spin up), it becomes more energetically favorable for its neighbors to have the opposite orientation (spin down). If you start with a disordered systema spin glassthen the influence of each magnet on its neighbors will cause spins to flip as the system tries to find a path to the lowest energy state, called the ground state.
This process is called thermal annealing, and it has some limits. In a standard spin glass, it's possible to end up in situations where every path to the ground state goes through a high-energy barrier. This can trap the system in a local minimum instead of allowing it to evolve into the ground state.
D-Wave's system, however, shows quantum behavior. This allows it to undergo tunneling, where it passes between two low-energy states without ever occupying intervening high-energy states. So, quantum annealing is expected to have better overall performance than thermal annealing.
The behavior of spin glasses has been studied separately from D-Wave's hardware because they can be used to model a variety of physical processes. But the company's business is based on the fact that it's possible to map a variety of optimization problems onto the behavior of a spin glass. In these cases, having the spin glass find its ground state is the mathematical equivalent of finding the optimal solution to a problem.
But again, we lack the theoretical understanding of whether it's possible to get these solutions in some other way that's faster or more efficient.
To get a better sense of how its hardware performed, the research team started by validating the D-Wave hardware using a small spin glass consisting of only 16 spins. "At this scale we can numerically evolve the time-dependent Schrdinger equation," the researchers write, meaning that the behavior of the system during quantum annealing could be directly calculated. That was compared to the same process running on a small corner of one of D-Wave's Advantage processors, which have roughly 5,000 individual qubits. (They actually ran 100 of these 16-spin systems in parallel on the processor.)
These results confirmed that the D-Wave processor undergoes the expected quantum annealing process. In fact, they found that the results generated by the D-Wave processor were a better match for the Schrdinger calculations than either of two ways we can model annealing: either simulated thermal annealing, or simulated quantum annealing.
With that validation in hand, the team turned to much larger spin glasses, consisting of thousands of spins. At this point, it's no longer realistic to use Schrdinger's equations: "Simulating the Schrdinger dynamics of QA with a classical computer is an unpromising optimization method, as memory requirements grow exponentially with system size." Instead, the researchers compared D-Wave's hardware to simulated annealing and simulated quantum annealing.
Both the actual hardware and the simulators all showed a similar behavior, in that the energy gap between the system and its ground state decayed exponentially as a function of annealing time. Put differently, the system starts in a relatively high-energy state, and the energy gap between that and the ground state gets smaller as a function of time raised to a power.
The key difference between the methods is the exponentthe bigger the exponent, the faster the system approaches its ground state. Simulated quantum annealing had a higher exponent than simulated thermal annealing, while the D-Wave machine had a higher exponent than either of them. And that indicates that doing quantum annealing in D-Wave's hardware will get to a solution considerably faster than simulated annealing can.
The one problem identified in the study came when the researchers explored how the system scaled with the number of spins being tracked. For both simulations, there was a consistent relationship between annealing time and the amount of energy left in the system. By contrast, the performance of the D-Wave hardware tailed off slightly, bringing it somewhat closer to the performance of the simulated quantum annealing. This is a product of a loss of coherence in the systemin essence, errors crop up and keep the hardware from behaving as a single quantum system.
The results are still closer to optimal than the ones that are produced in this time by either of the annealing simulations. But the scaling isn't as good as it is when the system retains its coherence. And D-Wave has indicated that improving coherence is a goal for its next generation of processors.
While spin glasses are interesting to physicists, D-Wave is selling time on its systems as a way to solve optimization problems more generallyspecifically those with practical implications. But it's difficult to translate the results in this paper to these practical problems, though the team suggests that's the next step: "Extending this characterization of quantum dynamics to industry-relevant optimization problems, which generally do not enable analysis via universal critical exponents or finite-size scaling, would mark an important next step in practical quantum computing."
Put more simply, Andrew King, director of performance research at D-Wave, told Ars that "industrial problems generally don't even have a well-defined notion of scaling in the same way that these spin glasses do."
"For industrial problems, I can say that problem A has more variables than problem B, but there may be other confounding factors that make problem B harder for unexpected reasons," King said. In addition, there are some cases where highly specialized algorithms can outperform a general optimization approach, at least as long as the size of the problem remains small enough.
Despite the practical uncertainty, the empirical demonstration of a scaling advantage in quantum annealing hardware would seem to settle what had been an open question about D-Wave's hardware.
Nature, 2023. DOI: 10.1038/s41586-023-05867-2 (About DOIs).
See original here:
Quantum effects of D-Waves hardware boost its performance - Ars Technica
- Quantum Computing Investments: A Once-in-a-Lifetime Opportunity? - Yahoo Finance - July 2nd, 2025 [July 2nd, 2025]
- Q&A: Companies are racing to develop the first useful quantum computerultracold neutral atoms could be the key - Phys.org - July 2nd, 2025 [July 2nd, 2025]
- Quantum Computers Just Reached the Holy Grail No Assumptions, No Limits - SciTechDaily - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - MSN - July 2nd, 2025 [July 2nd, 2025]
- The IBM Comeback Story That's Making Wall Street Pay Attention - Investopedia - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - The Daily Galaxy - July 2nd, 2025 [July 2nd, 2025]
- Measuring error rates of mid-circuit measurements - Nature - July 2nd, 2025 [July 2nd, 2025]
- IonQ Backs Texas Quantum Initiative To Boost Innovation - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Inside the Quantum Economy: Insights from the 2025 QED-C Report - AZoQuantum - July 2nd, 2025 [July 2nd, 2025]
- Six Ways Argonne Is Advancing Quantum Information Research - HPCwire - July 2nd, 2025 [July 2nd, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - MSN - July 2nd, 2025 [July 2nd, 2025]
- Researchers Target Quantum Advantage in Binding Energy Calculations - The Quantum Insider - July 2nd, 2025 [July 2nd, 2025]
- Pure Quantum: Rigetti's Journey From YC To NASDAQ And What Could Be Next - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Quantum machine learning (QML) is closer than you think: Why business leaders should start paying attention now - cio.com - July 2nd, 2025 [July 2nd, 2025]
- Quantum Threat: Bitcoins Fight To Secure Our Digital Future - Forbes - July 2nd, 2025 [July 2nd, 2025]
- The road to quantum datacentres goes beyond logical qubits - Computer Weekly - July 2nd, 2025 [July 2nd, 2025]
- Potential Solution Halves Testing Cost for Quantum Chips, Boosting Commercial Viability | Newswise - Newswise - June 29th, 2025 [June 29th, 2025]
- Scientists achieve teleportation between quantum computers for the first time ever - Earth.com - June 29th, 2025 [June 29th, 2025]
- Down 48%, Should You Buy the Dip on Rigetti Computing? - Yahoo Finance - June 29th, 2025 [June 29th, 2025]
- QuEra Computing, founded by researchers at Harvard University and the Massachusetts Institute of Te.. - - June 29th, 2025 [June 29th, 2025]
- Down 30%, Should You Buy the Dip on IonQ? - MSN - June 29th, 2025 [June 29th, 2025]
- New Hybrid QuantumClassical Computing Approach Used to Study Chemical Systems - Caltech - June 28th, 2025 [June 28th, 2025]
- Quantum, Moores Law, And AIs Future - Forbes - June 28th, 2025 [June 28th, 2025]
- Canada Sets Timeline to Shield Government Systems from Quantum Threat - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Is the UK Set for an AI-Powered Future with Quantum Boost? - AI Magazine - June 28th, 2025 [June 28th, 2025]
- 'Quantum AI' algorithms already outpace the fastest supercomputers, study says - Live Science - June 28th, 2025 [June 28th, 2025]
- IonQ vs IBM: Which Quantum Computing Stock Is the Better Buy Today? - Zacks Investment Research - June 28th, 2025 [June 28th, 2025]
- Quantum Computers Stealing Bitcoin? Stealing Ideas Is A Bigger Threat - Forbes - June 28th, 2025 [June 28th, 2025]
- IonQ And The University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Where Will Rigetti Computing Stock Be in 5 Years? - The Motley Fool - June 28th, 2025 [June 28th, 2025]
- Hearing Wrap Up: U.S. Must Update Technology to Prepare for the Quantum Age - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- U.S. Lawmakers Urge Action on Cybersecurity in Face of Quantum Threat - The Quantum Insider - June 26th, 2025 [June 26th, 2025]
- New chip could be the breakthrough the quantum computing industry has been waiting for - Live Science - June 26th, 2025 [June 26th, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - MSN - June 26th, 2025 [June 26th, 2025]
- Quantum Computing Achieves Protein Folding Breakthrough - IoT World Today - June 26th, 2025 [June 26th, 2025]
- Mace Opens Hearing on Quantum Computing and Advancing U.S. Cybersecurity - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- Report to Congress on Cyber Threats from Quantum Computing - USNI News - June 26th, 2025 [June 26th, 2025]
- Bringing post-quantum cryptography to Windows - InfoWorld - June 26th, 2025 [June 26th, 2025]
- Modeling a nitrogen-vacancy center with NVIDIA CUDA-Q Dynamics: University of Washington Capstone Project - Amazon.com - June 26th, 2025 [June 26th, 2025]
- ISC2025 Panel: Quantum Software Needs to Move Beyond Duct Tape But How? - HPCwire - June 26th, 2025 [June 26th, 2025]
- Q-CTRLs Fire Opal Integrated with Rigettis Ankaa-3, Demonstrating Significant Performance Boosts - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- IonQ and the University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - Business Wire - June 26th, 2025 [June 26th, 2025]
- IonQ to Participate in Quantum Korea 2025 and Support Quantum Hackathon for Emerging Talent - Business Wire - June 26th, 2025 [June 26th, 2025]
- 'This result has been more than a decade in the making': Millions of qubits on a single quantum processor now possible after cryogenic breakthrough -... - June 26th, 2025 [June 26th, 2025]
- A quantum opportunity; Colorado is the future of quantum computing, and a local nonprofit is part of the team - Montrose Daily Press - June 26th, 2025 [June 26th, 2025]
- IonQ and University of Washington Simulate Neutrinoless Double-Beta Decay on Quantum Computer - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- Government to Invest 645.4 Billion Won in Quantum Computer Development Over 8 Years - Businesskorea - June 26th, 2025 [June 26th, 2025]
- This Tech Giant Just Pulled the Curtain on a New Quantum Computer - 24/7 Wall St. - June 26th, 2025 [June 26th, 2025]
- IBM brings Fugaku supercomputer together with first quantum computer - SDxCentral - June 26th, 2025 [June 26th, 2025]
- At last, we are discovering what quantum computers will be useful for - New Scientist - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - IBM Newsroom - June 24th, 2025 [June 24th, 2025]
- The Year of Quantum: From concept to reality in 2025 - McKinsey & Company - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - PR Newswire - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Quantum breakthrough: Magic states now easier, faster, and way less noisy - ScienceDaily - June 24th, 2025 [June 24th, 2025]
- Unpacking quantum myths...and why they matter - Diginomica - June 24th, 2025 [June 24th, 2025]
- Bitcoins Countdown Has Begun: Experts Reveal When Quantum Computers Will Finally Shatter Its Legendary Encryption - Rude Baguette - June 24th, 2025 [June 24th, 2025]
- Six ways Argonne is advancing quantum information research - anl.gov - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - MarketScreener - June 24th, 2025 [June 24th, 2025]
- eleQtron selected as Technology Pioneer 2025 by the World Economic Forum - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Why Photonics is Essential for the Future of Quantum Innovation - AZoQuantum - June 24th, 2025 [June 24th, 2025]
- Microsoft Unveils a New 4-Dimension Geometrical Code for Quantum Error Correction - Quantum Computing Report - June 24th, 2025 [June 24th, 2025]
- A quantum satellite computer was launched into space for the first time: it was delivered to orbit by a SpaceX rocket - dev.ua - June 24th, 2025 [June 24th, 2025]
- Falcon 9 starts the era of space qubits: Historic launch of a quantum computer - Universe Space Tech - June 24th, 2025 [June 24th, 2025]
- What Happens To Bitcoin When Quantum Computers Arrive? - Bitcoin Magazine - June 22nd, 2025 [June 22nd, 2025]
- 'Reliable quantum computing is here': Novel approach to error-correction can reduce errors in future systems up to 1,000 times, Microsoft scientists... - June 22nd, 2025 [June 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - Yahoo - June 22nd, 2025 [June 22nd, 2025]
- IQC and Waterloo mourn the loss of Raymond Laflamme - University of Waterloo - June 22nd, 2025 [June 22nd, 2025]
- Why IBM Is the Best Quantum Computing Stock to Buy Right Now - The Motley Fool - June 22nd, 2025 [June 22nd, 2025]
- Canadas super hub combines the power of AI, GPU, and quantum computing - Interesting Engineering - June 22nd, 2025 [June 22nd, 2025]
- Oxford Quantum Circuits Achieves Quantum Error Detection Breakthrough - IoT World Today - June 22nd, 2025 [June 22nd, 2025]
- If I Could Only Buy 1 Quantum Computing Stock, This Would Be It (Hint: It's Not IonQ) - The Motley Fool - June 22nd, 2025 [June 22nd, 2025]
- Is This the Real Quantum Computing Stock You Should Be Buying? - 24/7 Wall St. - June 22nd, 2025 [June 22nd, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - MSN - June 22nd, 2025 [June 22nd, 2025]
- I am an AI expert and here's why quantum artificial intelligence is the next big thing in tech - TechRadar - June 20th, 2025 [June 20th, 2025]
- Quantum Computing Breakthrough: IonQ Shatters Records in Protein Folding for Drug Discovery - Stock Titan - June 20th, 2025 [June 20th, 2025]
- Quantum Korea 2025: From 100 Years of Discovery to Mobilizing Industry - The Quantum Insider - June 20th, 2025 [June 20th, 2025]
- IonQ and Kipu Quantum Break New Performance Records For Protein Folding And Optimization Problems - Business Wire - June 20th, 2025 [June 20th, 2025]
- Inside Illinois efforts to court the emerging quantum technology industry - Capitol News Illinois - June 20th, 2025 [June 20th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Motley Fool - June 20th, 2025 [June 20th, 2025]