Quantum physics proposes a new way to study biologythe results could revolutionize our understanding of how life works – Phys.org
This article has been reviewed according to ScienceX's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:
fact-checked
trusted source
written by researcher(s)
proofread
Imagine using your cellphone to control the activity of your own cells to treat injuries and disease. It sounds like something from the imagination of an overly optimistic science fiction writer. But this may one day be a possibility through the emerging field of quantum biology.
Over the past few decades, scientists have made incredible progress in understanding and manipulating biological systems at increasingly small scales, from protein folding to genetic engineering. And yet, the extent to which quantum effects influence living systems remains barely understood.
Quantum effects are phenomena that occur between atoms and molecules that can't be explained by classical physics. It has been known for more than a century that the rules of classical mechanics, like Newton's laws of motion, break down at atomic scales. Instead, tiny objects behave according to a different set of laws known as quantum mechanics.
For humans, who can only perceive the macroscopic world, or what's visible to the naked eye, quantum mechanics can seem counterintuitive and somewhat magical. Things you might not expect happen in the quantum world, like electrons "tunneling" through tiny energy barriers and appearing on the other side unscathed, or being in two different places at the same time in a phenomenon called superposition. Quantum mechanics describes the properties of atoms and molecules.
I am trained as a quantum engineer. Research in quantum mechanics is usually geared toward technology. However, and somewhat surprisingly, there is increasing evidence that naturean engineer with billions of years of practicehas learned how to use quantum mechanics to function optimally. If this is indeed true, it means that our understanding of biology is radically incomplete. It also means that we could possibly control physiological processes by using the quantum properties of biological matter.
Researchers can manipulate quantum phenomena to build better technology. In fact, you already live in a quantum-powered world: from laser pointers to GPS, magnetic resonance imaging and the transistors in your computerall these technologies rely on quantum effects.
In general, quantum effects only manifest at very small length and mass scales, or when temperatures approach absolute zero. This is because quantum objects like atoms and molecules lose their "quantumness" when they uncontrollably interact with each other and their environment. In other words, a macroscopic collection of quantum objects is better described by the laws of classical mechanics. Everything that starts quantum dies classical. For example, an electron can be manipulated to be in two places at the same time, but it will end up in only one place after a short whileexactly what would be expected classically. Electrons can be in two places at the same time, but will end up in one location eventually.
In a complicated, noisy biological system, it is thus expected that most quantum effects will rapidly disappear, washed out in what the physicist Erwin Schrdinger called the "warm, wet environment of the cell." To most physicists, the fact that the living world operates at elevated temperatures and in complex environments implies that biology can be adequately and fully described by classical physics: no funky barrier crossing, no being in multiple locations simultaneously.
Chemists, however, have for a long time begged to differ. Research on basic chemical reactions at room temperature unambiguously shows that processes occurring within biomolecules like proteins and genetic material are the result of quantum effects. Importantly, such nanoscopic, short-lived quantum effects are consistent with driving some macroscopic physiological processes that biologists have measured in living cells and organisms. Research suggests that quantum effects influence biological functions, including regulating enzyme activity, sensing magnetic fields, cell metabolism and electron transport in biomolecules.
The tantalizing possibility that subtle quantum effects can tweak biological processes presents both an exciting frontier and a challenge to scientists. Studying quantum mechanical effects in biology requires tools that can measure the short time scales, small length scales and subtle differences in quantum states that give rise to physiological changesall integrated within a traditional wet lab environment. Birds use quantum effects in navigation.
In my work, I build instruments to study and control the quantum properties of small things like electrons. In the same way that electrons have mass and charge, they also have a quantum property called spin. Spin defines how the electrons interact with a magnetic field, in the same way that charge defines how electrons interact with an electric field. The quantum experiments I have been building since graduate school, and now in my own lab, aim to apply tailored magnetic fields to change the spins of particular electrons.
Research has demonstrated that many physiological processes are influenced by weak magnetic fields. These processes include stem cell development and maturation, cell proliferation rates, genetic material repair and countless others. These physiological responses to magnetic fields are consistent with chemical reactions that depend on the spin of particular electrons within molecules. Applying a weak magnetic field to change electron spins can thus effectively control a chemical reaction's final products, with important physiological consequences.
Currently, a lack of understanding of how such processes work at the nanoscale level prevents researchers from determining exactly what strength and frequency of magnetic fields cause specific chemical reactions in cells. Current cellphone, wearable and miniaturization technologies are already sufficient to produce tailored, weak magnetic fields that change physiology, both for good and for bad. The missing piece of the puzzle is, hence, a "deterministic codebook" of how to map quantum causes to physiological outcomes.
In the future, fine-tuning nature's quantum properties could enable researchers to develop therapeutic devices that are noninvasive, remotely controlled and accessible with a mobile phone. Electromagnetic treatments could potentially be used to prevent and treat disease, such as brain tumors, as well as in biomanufacturing, such as increasing lab-grown meat production.
Quantum biology is one of the most interdisciplinary fields to ever emerge. How do you build community and train scientists to work in this area?
Since the pandemic, my lab at the University of California, Los Angeles and the University of Surrey's Quantum Biology Doctoral Training Centre have organized Big Quantum Biology meetings to provide an informal weekly forum for researchers to meet and share their expertise in fields like mainstream quantum physics, biophysics, medicine, chemistry and biology.
Research with potentially transformative implications for biology, medicine and the physical sciences will require working within an equally transformative model of collaboration. Working in one unified lab would allow scientists from disciplines that take very different approaches to research to conduct experiments that meet the breadth of quantum biology from the quantum to the molecular, the cellular and the organismal.
The existence of quantum biology as a discipline implies that traditional understanding of life processes is incomplete. Further research will lead to new insights into the age-old question of what life is, how it can be controlled and how to learn with nature to build better quantum technologies.
The rest is here:
Quantum physics proposes a new way to study biologythe results could revolutionize our understanding of how life works - Phys.org
- Xanadu creates the first-ever scalable photonic quantum computer - Interesting Engineering - January 26th, 2025 [January 26th, 2025]
- Quantum computing could go big this year. Here's a glossary to get you started - Quartz - January 24th, 2025 [January 24th, 2025]
- ZuriQ is rewriting the rules of quantum computing by letting qubits fly - TNW - January 24th, 2025 [January 24th, 2025]
- Is Quantum Computing Investable As The Next AI? - Forbes - January 24th, 2025 [January 24th, 2025]
- The Next Big Cyber Threat Could Come from Quantum Computers Is the Government Ready? - Government Accountability Office - January 24th, 2025 [January 24th, 2025]
- Opinion: The Best Quantum Computing Stock to Buy in 2025 - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- Are trapped molecules the next big thing in quantum computing? - Cosmos - January 24th, 2025 [January 24th, 2025]
- 2 Scorching-Hot Quantum Computing Stocks That Can Plunge Up to 80%, According to 1 Wall Street Analyst - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- Want to Buy Quantum Computing Stocks This Year? 2 Companies That Could Net You Millions in Retirement - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- University of Strathclyde Joins FIRETRACE Project to Overcome Quantum Computing Thermal Challenges - HPCwire - January 24th, 2025 [January 24th, 2025]
- European Commission invests 3M to develop new chip that will help solve quantum computing bottlenecks - Silicon Canals - January 24th, 2025 [January 24th, 2025]
- Researcher: Bitcoin Will Evolve to Meet Quantum Threat - The Quantum Insider - January 24th, 2025 [January 24th, 2025]
- Interlune plans to gather scarce lunar Helium-3 for quantum computing on Earth - SpaceNews - January 24th, 2025 [January 24th, 2025]
- Prediction: Quantum Computing Will Be the Biggest AI Trend in 2025, and This Stock Will Lead the Charge - The Motley Fool - January 24th, 2025 [January 24th, 2025]
- How Will AI and Quantum Work Together? Quantinuums View - HPCwire - January 24th, 2025 [January 24th, 2025]
- 2 Scorching-Hot Quantum Computing Stocks That Can Plunge Up to 80%, According to 1 Wall Street Analyst - Yahoo Finance - January 24th, 2025 [January 24th, 2025]
- Lufthansa Partners with DLR, Kipu Quantum, and Eurowings to Advance Quantum Computing for Air Traffic - The Quantum Insider - January 24th, 2025 [January 24th, 2025]
- Xanadu Develops Aurora, a Modular Quantum Computing System that Shows a Path for Scaling to Very Large Systems - Quantum Computing Report - January 24th, 2025 [January 24th, 2025]
- Why ZuriQ Thinks Quantum Sceptics Are Far Too Gloomy - Forbes - January 24th, 2025 [January 24th, 2025]
- Scientists Investigate Error Mitigation For Logical Qubits as a Path Toward Reliable Quantum Computing - The Quantum Insider - January 24th, 2025 [January 24th, 2025]
- The Risks of Quantum Computing to Cryptocurrency, Bitcoin, and Blockchain - TheStreet - January 24th, 2025 [January 24th, 2025]
- Canadian company Xanadu tests building blocks for commercial quantum computer - The Globe and Mail - January 24th, 2025 [January 24th, 2025]
- Quantum computer helps to answer questions on lattice gauge theory - Phys.org - January 13th, 2025 [January 13th, 2025]
- Quantum computers get automatic error correction for the first time - New Scientist - January 11th, 2025 [January 11th, 2025]
- MicroCloud Hologram Achieves Breakthrough in Quantum-Based Holographic Computing Research - StockTitan - January 11th, 2025 [January 11th, 2025]
- Rigetti Computing to Participate in Fireside Chat at 27th Annual Needham Growth Conference - GlobeNewswire - January 11th, 2025 [January 11th, 2025]
- Rigetti Computing: The Quantum Revolution Is Just Getting Started (NASDAQ:RGTI) - Seeking Alpha - January 11th, 2025 [January 11th, 2025]
- Quantum computing CEO hits back on Jensen Huang's blunt words - TheStreet - January 11th, 2025 [January 11th, 2025]
- Nvidia and quantum computers, Bitcoin seesaws, and the Trump trade: Markets news roundup - Quartz - January 11th, 2025 [January 11th, 2025]
- Veteran analyst who predicted quantum computing stocks rally goes bargain hunting - TheStreet - January 11th, 2025 [January 11th, 2025]
- D-Wave is not happy about the Nvidia CEOs thoughts on quantum computing: 'Its an egregious error' - Fast Company - January 11th, 2025 [January 11th, 2025]
- D-Wave Announces a 120% Increase in Bookings for 2024, the Sale of Its First D-Wave Advantage Processor, and an Agreement to Sell Additional Common... - January 11th, 2025 [January 11th, 2025]
- Quantum? No solace: Nvidia CEO sinks QC stocks with '20 years off' forecast - The Register - January 11th, 2025 [January 11th, 2025]
- For Quantum Companies, Tiny Expectation Shifts Can Lead to Dramatic Price Swings - The Quantum Insider - January 11th, 2025 [January 11th, 2025]
- How Yizhi Yous quantum research could revolutionize computing and STEM education - Northeastern University - January 11th, 2025 [January 11th, 2025]
- Quantum Computing Stocks Are Having a Rough Week. Why the Future Matters More. - Barron's - January 11th, 2025 [January 11th, 2025]
- Why Quantum Computing Inc. Stock Soared a Whopping 1,713% in 2024 - The Motley Fool - January 11th, 2025 [January 11th, 2025]
- Nvidia CEO: Quantum Computers Won't Be Very Useful for Another 20 Years - PCMag - January 11th, 2025 [January 11th, 2025]
- Quantum Computing Stocks Are Having a Rough Week. Investors Should Look to the Future. - Yahoo! Voices - January 11th, 2025 [January 11th, 2025]
- UConn, NORDITA, and Google Reveal Gravity As Both Friend and Foe of Quantum Technology - The Quantum Insider - January 11th, 2025 [January 11th, 2025]
- Artificial Intelligence (AI), Quantum Computing, and RoboTaxis: Here's 1 "Magnificent Seven" Stock That Has It All - The Motley Fool - January 11th, 2025 [January 11th, 2025]
- Saudi Arabia Lays Out Its Strategic Vision For The Quantum Era - The Quantum Insider - January 11th, 2025 [January 11th, 2025]
- Quantum Setback: Stocks Dive as Nvidia Sees a Long Road Ahead - Wall Street Pit - January 11th, 2025 [January 11th, 2025]
- Quantum Computing Stocks, Including IonQ (IONQ) and D-Wave (QBTS), Are Volatile and Mixed - Insider Monkey - January 11th, 2025 [January 11th, 2025]
- NIH explores the world of quantum sensors and how they can help medicine - Federal News Network - January 11th, 2025 [January 11th, 2025]
- Quantum Computing 2025 Is it Turning the Corner? - HPCwire - January 1st, 2025 [January 1st, 2025]
- IBM will release the largest ever quantum computer in 2025 - New Scientist - January 1st, 2025 [January 1st, 2025]
- Betting on the Quantum Buzz: Righetti, D-Wave, and QUBTs Option Explosion - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- "Impossible" quantum teleportation achieved on normal internet cables - Earth.com - January 1st, 2025 [January 1st, 2025]
- It Takes A Village: Top 10 Quantum Partnerships of 2024 - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- TQIs 2025 Predictions For The Quantum Industry - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Future outlook: The impact of quantum computing on financial services - London Daily News - January 1st, 2025 [January 1st, 2025]
- Quantum computing is finally here. But what is it? - Crain's Chicago Business - January 1st, 2025 [January 1st, 2025]
- Google's quantum breakthrough is 'truly remarkable' - but there's more to do - ZDNet - January 1st, 2025 [January 1st, 2025]
- 2025 is the year of quantum computing, expert says - MSN - January 1st, 2025 [January 1st, 2025]
- The Years Biggest Breakthroughs in Science and Tech (Feat.: OK, but Seriously, What Is Quantum Computing?) - The Ringer - January 1st, 2025 [January 1st, 2025]
- Circuit-Knitting Technique Sews Up Nearly 8-Fold Reduction in Quantum Resource Overhead - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Three New Error Correction Papers for the End of the Year - Quantum Computing Report - January 1st, 2025 [January 1st, 2025]
- The Quantum Race Heats Up! Is It Time to Bet on Quantum Computing Giants? - Jomfruland.net - January 1st, 2025 [January 1st, 2025]
- This Cryptographer Helps Quantum-Proof the Internet - IEEE Spectrum - January 1st, 2025 [January 1st, 2025]
- Why IBM Stock Offers a Strategic Edge in the Quantum Computing Race - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- Quantum-Si Isn't A Quantum Computing Company, And Shares Are Overvalued (NASDAQ:QSI) - Seeking Alpha - January 1st, 2025 [January 1st, 2025]
- MicroAlgo Inc. Announces the Launch of FULL Adder Operation Quantum Algorithm Technology Based on CPU Registers in Quantum Gate Computing - Yahoo... - January 1st, 2025 [January 1st, 2025]
- Quantum Breakthrough or Just Hype? Discover the Truth. - Jomfruland.net - January 1st, 2025 [January 1st, 2025]
- Google's quantum computer performs calculation in 5 minutes that would take longer than the universe's existence for a supercomputer - Warp News - December 25th, 2024 [December 25th, 2024]
- IBM to build new quantum computer in state-backed technology park - Daily Herald - December 20th, 2024 [December 20th, 2024]
- IBM and State of Illinois to Build National Quantum Algorithm Center in Chicago with Universities and Industries - IBM Newsroom - December 14th, 2024 [December 14th, 2024]
- Google's Quantum Chip Can Do in 5 Minutes What Would Take Other Computers 10 Septillion Years - PCMag - December 14th, 2024 [December 14th, 2024]
- Googles Willow Chip Has Quantum Developers Weeping With Joy - TechNewsWorld - December 14th, 2024 [December 14th, 2024]
- Google says its new chip may do computation in another universe - The Stack - December 14th, 2024 [December 14th, 2024]
- Google's Willow quantum chip breakthrough is hidden behind a questionable benchmark - Engadget - December 14th, 2024 [December 14th, 2024]
- Google Unveils the 105 Qubit Willow Chip and Demonstrates New Levels of RCS Benchmark Performance and Quantum Error Correction Below the Threshold -... - December 14th, 2024 [December 14th, 2024]
- Will Willow, Google's quantum computing chip, put bitcoin at risk? Here's what you should know - The Economic Times - December 14th, 2024 [December 14th, 2024]
- Google Just Made a Breakthrough in Quantum Computing With Its New Chip - Robb Report - December 14th, 2024 [December 14th, 2024]
- Why Googles Quantum Computer Chip Willow Is A Game Changer - Forbes - December 14th, 2024 [December 14th, 2024]
- Google has unveiled a new quantum computer chip that cracks a '30-year challenge in the field' - Business Insider - December 14th, 2024 [December 14th, 2024]
- Google hits a major milestone: A quantum computer performs 47 years' worth of calculations in seconds - Belles and Gals - December 14th, 2024 [December 14th, 2024]
- China's 504-qubit quantum computer chip marks a new domestic record will be globally available via the cloud - Tom's Hardware - December 14th, 2024 [December 14th, 2024]
- Google's WIllow chip is a big leap towards usable quantum computing but its claim of beating a classical computer by a 'septillion years' is... - December 14th, 2024 [December 14th, 2024]
- Colombias First Quantum Computer: Advancing Education, Research, and Technological Innovation - The Quantum Insider - December 5th, 2024 [December 5th, 2024]