Reducing CNOT count in quantum Fourier transform for the linear … – Nature.com
Quantum algorithms are becoming important because of their accelerated processing speed over classical algorithms for solving complex problems1,2,3,4,5. However, using quantum algorithms to solve practical problems is difficult because quantum states are very susceptible to noise, which can cause critical errors in the execution of quantum algorithms. In other words, quantum errors caused by noise pose a major obstacle to the realization of quantum algorithms.
The quantum circuit model is a well-known model for quantum computation. In this model, quantum algorithms are represented by quantum circuits composed of qubits and gates. Since noise arises from the evolution of quantum states, gate operations are the major cause of noise. Therefore, quantum circuits should be designed with a minimal number of gates, especially in the noisy intermediate-scale quantum (NISQ) arena6,7.
Within the realm of quantum logic synthesis, quantum circuits are broken down into gates derived from a universal gate library. The basic gate library consists of CNOT and single-qubit gates8,9. Since CNOT gates are considered the main generators of quantum errors and have a longer execution time compared to single-qubit gates10, CNOT gates are expected to dominate the cost of quantum circuits when using the basic gate library.
When considering the cost of a quantum circuit, connectivity between qubits should also be taken into account. This is because physical limitations in quantum hardware may enforce quantum circuits to adopt the nearest-neighbor (NN) architecture10,11. The NN architecture means that a qubit in the circuit only interacts with adjacent qubits.
The quantum Fourier transform (QFT) is an essential tool for many quantum algorithms, such as quantum addition12, quantum phase estimation (QPE)13, quantum amplitude estimation (QAE)3, the algorithm for solving linear systems of equations4, and Shors factoring algorithm1, to name a few. Therefore, the cost optimization of QFT would result in the efficiency improvement of these quantum algorithms.
There have been studies aimed at reducing circuit costs of QFT8,14,15,16,17,18,19,20,21,22. Among them are studies related to the number of CNOT gates in QFT, including the following:
When constructing an (n)-qubit QFT circuit using the basic gate library, (n(n-1)) CNOT gates are required, provided that qubit reordering is allowed8. Qubit reordering implies that the sequence of qubits can be altered before and after the execution of the circuit.
In Ref.14, the authors incorporated (n(n-1)/2) extra SWAP gates to develop an (n)-qubit linear nearest-neighbor (LNN) QFT circuit, which accommodates qubit reordering.
To synthesize a single SWAP gate using the basic gate library, three CNOT gates are required8.
Consequently, the total number of CNOT gates required for the (n)-qubit LNN QFT circuit presented in Ref.14 is (5n(n-1)/2).
By employing SWAP gates in the construction of LNN QFT circuits, the primary term representing the quantity of CNOT gates increases by a factor of 2.5.
Previous research efforts, as documented in case studies, have investigated techniques to minimize the amount of SWAP gates required in the LNN architecture when assembling (n)-qubit LNN QFT circuits15,16,17,18. These studies aimed to optimize the circuit design and improve overall efficiency.
In this paper, we propose a new n-qubit LNN QFT circuit design that directly utilizes CNOT gates, unlike previous studies14,15,16,17,18 that utilized SWAP gates. Our approach offers a significant advantage by synthesizing a more compact QFT circuit using CNOT gates instead of SWAP gates, as the implementation of each SWAP gate requires three CNOT gates. Upon qubit reordering, our (n)-qubit LNN QFT circuit requires ({n}^{2}+n-4) CNOT gates, which are 40% of those in Ref.14 asymptotically. Furthermore, we demonstrate that our circuit design significantly reduces the number of CNOT gates compared to the best-known results for 5- to 10-qubit LNN QFT circuits17,18.
In the following analysis, we compare our QFT circuit with the conventional QFT circuit8 when used as inputs for the Qiskit transpiler23, which is required for implementation on IBM quantum computers that necessitate NN architecture10. Our findings confirm that using our QFT circuit as input requires fewer CNOT gates in comparison to the conventional QFT circuits. This evidence indicates that our QFT circuit design could serve as a foundation for synthesizing QFT circuits that are compatible with NN architecture, potentially leading to more efficient implementations.
Furthermore, we present experimental results from implementing the QPE using 3-qubit QFTs on actual quantum hardware, specifically the IBM_Nairobi10 and Rigetti Aspen-1111 systems. We also illustrate the decomposition of controlled-({R}_{y}) gates that share a target qubit using our proposed method. This particular circuit is often found in QAE, which is anticipated to supplant classical Monte Carlo integration methods24,25. By providing these results, we aim to highlight the practicality and effectiveness of our approach in real-world quantum computing applications.
The remainder of this paper is organized as follows: in the Background section, we provide a brief overview of quantum circuits, QFT, QPE, and QAE. The proposed approach section outlines our method for constructing LNN QFT circuits. In the resultsand discussion section, we present the outcomes of transpilation on IBM quantum computers, display the experimental results of QPE executions on quantum hardware, and illustrate how to convert a circuit of controlled-({R}_{y}) gates sharing the target qubit into an LNN circuit using our proposed method. We also address the limitations of our study and suggest potential future research directions. Finally, we conclude the paper with a summary of our findings and their implications for the field of quantum computing.
See the original post:
Reducing CNOT count in quantum Fourier transform for the linear ... - Nature.com
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 6th, 2025 [July 6th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - ScienceBlog.com - July 6th, 2025 [July 6th, 2025]
- Helgoland 2025: the inside story of what happened on the quantum island - Physics World - July 6th, 2025 [July 6th, 2025]
- A shortcut to quantum randomness: Hacked qubit blocks achieve the unexpected - Interesting Engineering - July 6th, 2025 [July 6th, 2025]
- Physicists use 5,564-qubit quantum computer to model the death of our universe - The Brighter Side of News - July 6th, 2025 [July 6th, 2025]
- Small, room-temperature quantum computers that use light on the horizon after breakthrough, scientists say - Live Science - July 4th, 2025 [July 4th, 2025]
- Quantum computers are surprisingly random but that's a good thing - New Scientist - July 4th, 2025 [July 4th, 2025]
- Quantum computers could bring lost Bitcoin back to life: Heres how - Cointelegraph - July 4th, 2025 [July 4th, 2025]
- The Quantum Computing Industry Is Crowded. Why D-Wave, IonQ, and Rigetti Are a Buy. - Barron's - July 4th, 2025 [July 4th, 2025]
- Quantum tech is coming and with it a risk of cyber doomsday - politico.eu - July 4th, 2025 [July 4th, 2025]
- Quantum Annealers From D-Wave Optimise Robotic Inspection Of Industrial Components. - Quantum Zeitgeist - July 4th, 2025 [July 4th, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - Yahoo Finance - July 4th, 2025 [July 4th, 2025]
- QBTS: With Its Quantum Leap Priced In, Jump In On A Dip (NYSE:QBTS) - Seeking Alpha - July 4th, 2025 [July 4th, 2025]
- Buy this quantum computing stock that can rally more than 30%, Cantor says - CNBC - July 4th, 2025 [July 4th, 2025]
- A new tech race is on. Can Europe learn from the ones it lost? - politico.eu - July 4th, 2025 [July 4th, 2025]
- Rigetti Computing: Cantor's Bullish Call May Be Just the Start - MarketBeat - July 4th, 2025 [July 4th, 2025]
- The Quantum Data Center of the Future: Q&A - IoT World Today - July 4th, 2025 [July 4th, 2025]
- Quantum Computing Investments: A Once-in-a-Lifetime Opportunity? - Yahoo Finance - July 2nd, 2025 [July 2nd, 2025]
- Q&A: Companies are racing to develop the first useful quantum computerultracold neutral atoms could be the key - Phys.org - July 2nd, 2025 [July 2nd, 2025]
- Quantum Computers Just Reached the Holy Grail No Assumptions, No Limits - SciTechDaily - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - MSN - July 2nd, 2025 [July 2nd, 2025]
- The IBM Comeback Story That's Making Wall Street Pay Attention - Investopedia - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - The Daily Galaxy - July 2nd, 2025 [July 2nd, 2025]
- Measuring error rates of mid-circuit measurements - Nature - July 2nd, 2025 [July 2nd, 2025]
- IonQ Backs Texas Quantum Initiative To Boost Innovation - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Inside the Quantum Economy: Insights from the 2025 QED-C Report - AZoQuantum - July 2nd, 2025 [July 2nd, 2025]
- Six Ways Argonne Is Advancing Quantum Information Research - HPCwire - July 2nd, 2025 [July 2nd, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - MSN - July 2nd, 2025 [July 2nd, 2025]
- Researchers Target Quantum Advantage in Binding Energy Calculations - The Quantum Insider - July 2nd, 2025 [July 2nd, 2025]
- Pure Quantum: Rigetti's Journey From YC To NASDAQ And What Could Be Next - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Quantum machine learning (QML) is closer than you think: Why business leaders should start paying attention now - cio.com - July 2nd, 2025 [July 2nd, 2025]
- Quantum Threat: Bitcoins Fight To Secure Our Digital Future - Forbes - July 2nd, 2025 [July 2nd, 2025]
- The road to quantum datacentres goes beyond logical qubits - Computer Weekly - July 2nd, 2025 [July 2nd, 2025]
- Potential Solution Halves Testing Cost for Quantum Chips, Boosting Commercial Viability | Newswise - Newswise - June 29th, 2025 [June 29th, 2025]
- Scientists achieve teleportation between quantum computers for the first time ever - Earth.com - June 29th, 2025 [June 29th, 2025]
- Down 48%, Should You Buy the Dip on Rigetti Computing? - Yahoo Finance - June 29th, 2025 [June 29th, 2025]
- QuEra Computing, founded by researchers at Harvard University and the Massachusetts Institute of Te.. - - June 29th, 2025 [June 29th, 2025]
- Down 30%, Should You Buy the Dip on IonQ? - MSN - June 29th, 2025 [June 29th, 2025]
- New Hybrid QuantumClassical Computing Approach Used to Study Chemical Systems - Caltech - June 28th, 2025 [June 28th, 2025]
- Quantum, Moores Law, And AIs Future - Forbes - June 28th, 2025 [June 28th, 2025]
- Canada Sets Timeline to Shield Government Systems from Quantum Threat - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Is the UK Set for an AI-Powered Future with Quantum Boost? - AI Magazine - June 28th, 2025 [June 28th, 2025]
- 'Quantum AI' algorithms already outpace the fastest supercomputers, study says - Live Science - June 28th, 2025 [June 28th, 2025]
- IonQ vs IBM: Which Quantum Computing Stock Is the Better Buy Today? - Zacks Investment Research - June 28th, 2025 [June 28th, 2025]
- Quantum Computers Stealing Bitcoin? Stealing Ideas Is A Bigger Threat - Forbes - June 28th, 2025 [June 28th, 2025]
- IonQ And The University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Where Will Rigetti Computing Stock Be in 5 Years? - The Motley Fool - June 28th, 2025 [June 28th, 2025]
- Hearing Wrap Up: U.S. Must Update Technology to Prepare for the Quantum Age - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- U.S. Lawmakers Urge Action on Cybersecurity in Face of Quantum Threat - The Quantum Insider - June 26th, 2025 [June 26th, 2025]
- New chip could be the breakthrough the quantum computing industry has been waiting for - Live Science - June 26th, 2025 [June 26th, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - MSN - June 26th, 2025 [June 26th, 2025]
- Quantum Computing Achieves Protein Folding Breakthrough - IoT World Today - June 26th, 2025 [June 26th, 2025]
- Mace Opens Hearing on Quantum Computing and Advancing U.S. Cybersecurity - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- Report to Congress on Cyber Threats from Quantum Computing - USNI News - June 26th, 2025 [June 26th, 2025]
- Bringing post-quantum cryptography to Windows - InfoWorld - June 26th, 2025 [June 26th, 2025]
- Modeling a nitrogen-vacancy center with NVIDIA CUDA-Q Dynamics: University of Washington Capstone Project - Amazon.com - June 26th, 2025 [June 26th, 2025]
- ISC2025 Panel: Quantum Software Needs to Move Beyond Duct Tape But How? - HPCwire - June 26th, 2025 [June 26th, 2025]
- Q-CTRLs Fire Opal Integrated with Rigettis Ankaa-3, Demonstrating Significant Performance Boosts - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- IonQ and the University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - Business Wire - June 26th, 2025 [June 26th, 2025]
- IonQ to Participate in Quantum Korea 2025 and Support Quantum Hackathon for Emerging Talent - Business Wire - June 26th, 2025 [June 26th, 2025]
- 'This result has been more than a decade in the making': Millions of qubits on a single quantum processor now possible after cryogenic breakthrough -... - June 26th, 2025 [June 26th, 2025]
- A quantum opportunity; Colorado is the future of quantum computing, and a local nonprofit is part of the team - Montrose Daily Press - June 26th, 2025 [June 26th, 2025]
- IonQ and University of Washington Simulate Neutrinoless Double-Beta Decay on Quantum Computer - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- Government to Invest 645.4 Billion Won in Quantum Computer Development Over 8 Years - Businesskorea - June 26th, 2025 [June 26th, 2025]
- This Tech Giant Just Pulled the Curtain on a New Quantum Computer - 24/7 Wall St. - June 26th, 2025 [June 26th, 2025]
- IBM brings Fugaku supercomputer together with first quantum computer - SDxCentral - June 26th, 2025 [June 26th, 2025]
- At last, we are discovering what quantum computers will be useful for - New Scientist - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - IBM Newsroom - June 24th, 2025 [June 24th, 2025]
- The Year of Quantum: From concept to reality in 2025 - McKinsey & Company - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - PR Newswire - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Quantum breakthrough: Magic states now easier, faster, and way less noisy - ScienceDaily - June 24th, 2025 [June 24th, 2025]
- Unpacking quantum myths...and why they matter - Diginomica - June 24th, 2025 [June 24th, 2025]
- Bitcoins Countdown Has Begun: Experts Reveal When Quantum Computers Will Finally Shatter Its Legendary Encryption - Rude Baguette - June 24th, 2025 [June 24th, 2025]
- Six ways Argonne is advancing quantum information research - anl.gov - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - MarketScreener - June 24th, 2025 [June 24th, 2025]
- eleQtron selected as Technology Pioneer 2025 by the World Economic Forum - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Why Photonics is Essential for the Future of Quantum Innovation - AZoQuantum - June 24th, 2025 [June 24th, 2025]
- Microsoft Unveils a New 4-Dimension Geometrical Code for Quantum Error Correction - Quantum Computing Report - June 24th, 2025 [June 24th, 2025]
- A quantum satellite computer was launched into space for the first time: it was delivered to orbit by a SpaceX rocket - dev.ua - June 24th, 2025 [June 24th, 2025]