Reducing CNOT count in quantum Fourier transform for the linear … – Nature.com
Quantum algorithms are becoming important because of their accelerated processing speed over classical algorithms for solving complex problems1,2,3,4,5. However, using quantum algorithms to solve practical problems is difficult because quantum states are very susceptible to noise, which can cause critical errors in the execution of quantum algorithms. In other words, quantum errors caused by noise pose a major obstacle to the realization of quantum algorithms.
The quantum circuit model is a well-known model for quantum computation. In this model, quantum algorithms are represented by quantum circuits composed of qubits and gates. Since noise arises from the evolution of quantum states, gate operations are the major cause of noise. Therefore, quantum circuits should be designed with a minimal number of gates, especially in the noisy intermediate-scale quantum (NISQ) arena6,7.
Within the realm of quantum logic synthesis, quantum circuits are broken down into gates derived from a universal gate library. The basic gate library consists of CNOT and single-qubit gates8,9. Since CNOT gates are considered the main generators of quantum errors and have a longer execution time compared to single-qubit gates10, CNOT gates are expected to dominate the cost of quantum circuits when using the basic gate library.
When considering the cost of a quantum circuit, connectivity between qubits should also be taken into account. This is because physical limitations in quantum hardware may enforce quantum circuits to adopt the nearest-neighbor (NN) architecture10,11. The NN architecture means that a qubit in the circuit only interacts with adjacent qubits.
The quantum Fourier transform (QFT) is an essential tool for many quantum algorithms, such as quantum addition12, quantum phase estimation (QPE)13, quantum amplitude estimation (QAE)3, the algorithm for solving linear systems of equations4, and Shors factoring algorithm1, to name a few. Therefore, the cost optimization of QFT would result in the efficiency improvement of these quantum algorithms.
There have been studies aimed at reducing circuit costs of QFT8,14,15,16,17,18,19,20,21,22. Among them are studies related to the number of CNOT gates in QFT, including the following:
When constructing an (n)-qubit QFT circuit using the basic gate library, (n(n-1)) CNOT gates are required, provided that qubit reordering is allowed8. Qubit reordering implies that the sequence of qubits can be altered before and after the execution of the circuit.
In Ref.14, the authors incorporated (n(n-1)/2) extra SWAP gates to develop an (n)-qubit linear nearest-neighbor (LNN) QFT circuit, which accommodates qubit reordering.
To synthesize a single SWAP gate using the basic gate library, three CNOT gates are required8.
Consequently, the total number of CNOT gates required for the (n)-qubit LNN QFT circuit presented in Ref.14 is (5n(n-1)/2).
By employing SWAP gates in the construction of LNN QFT circuits, the primary term representing the quantity of CNOT gates increases by a factor of 2.5.
Previous research efforts, as documented in case studies, have investigated techniques to minimize the amount of SWAP gates required in the LNN architecture when assembling (n)-qubit LNN QFT circuits15,16,17,18. These studies aimed to optimize the circuit design and improve overall efficiency.
In this paper, we propose a new n-qubit LNN QFT circuit design that directly utilizes CNOT gates, unlike previous studies14,15,16,17,18 that utilized SWAP gates. Our approach offers a significant advantage by synthesizing a more compact QFT circuit using CNOT gates instead of SWAP gates, as the implementation of each SWAP gate requires three CNOT gates. Upon qubit reordering, our (n)-qubit LNN QFT circuit requires ({n}^{2}+n-4) CNOT gates, which are 40% of those in Ref.14 asymptotically. Furthermore, we demonstrate that our circuit design significantly reduces the number of CNOT gates compared to the best-known results for 5- to 10-qubit LNN QFT circuits17,18.
In the following analysis, we compare our QFT circuit with the conventional QFT circuit8 when used as inputs for the Qiskit transpiler23, which is required for implementation on IBM quantum computers that necessitate NN architecture10. Our findings confirm that using our QFT circuit as input requires fewer CNOT gates in comparison to the conventional QFT circuits. This evidence indicates that our QFT circuit design could serve as a foundation for synthesizing QFT circuits that are compatible with NN architecture, potentially leading to more efficient implementations.
Furthermore, we present experimental results from implementing the QPE using 3-qubit QFTs on actual quantum hardware, specifically the IBM_Nairobi10 and Rigetti Aspen-1111 systems. We also illustrate the decomposition of controlled-({R}_{y}) gates that share a target qubit using our proposed method. This particular circuit is often found in QAE, which is anticipated to supplant classical Monte Carlo integration methods24,25. By providing these results, we aim to highlight the practicality and effectiveness of our approach in real-world quantum computing applications.
The remainder of this paper is organized as follows: in the Background section, we provide a brief overview of quantum circuits, QFT, QPE, and QAE. The proposed approach section outlines our method for constructing LNN QFT circuits. In the resultsand discussion section, we present the outcomes of transpilation on IBM quantum computers, display the experimental results of QPE executions on quantum hardware, and illustrate how to convert a circuit of controlled-({R}_{y}) gates sharing the target qubit into an LNN circuit using our proposed method. We also address the limitations of our study and suggest potential future research directions. Finally, we conclude the paper with a summary of our findings and their implications for the field of quantum computing.
See the original post:
Reducing CNOT count in quantum Fourier transform for the linear ... - Nature.com
- Nightmare calculation may be too tricky for even quantum computers - New Scientist - October 19th, 2025 [October 19th, 2025]
- Quantum computings top 3 cybersecurity threats, and why we cant ignore them - TNGlobal - October 19th, 2025 [October 19th, 2025]
- Quantum cryptography offers ability to protect from attackers looking to break encryption - IT Brew - October 19th, 2025 [October 19th, 2025]
- D-Wave Quantum gains as Swiss Quantum Technology agrees to deploy one of its computers for 10 million euros - Sherwood News - October 19th, 2025 [October 19th, 2025]
- D-Wave Quantum Marks Milestone With Further Push Into Europe - Barron's - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks for the Next 10 Years? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- D-Wave Quantum (QBTS) Named Winner in Fast Company's 2025 Next Big Things in Tech Awards - NewMediaWire - October 17th, 2025 [October 17th, 2025]
- D-Wave stock rises again after it strikes a deal to bring its Advantage2 quantum computer to Italy - Fast Company - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Right Now? - AOL.com - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks for the Next 10 Years? - The Motley Fool - October 17th, 2025 [October 17th, 2025]
- Great News for IonQ Stock, Rigetti Stock, and Quantum Computing Stock Investors - The Motley Fool - October 17th, 2025 [October 17th, 2025]
- Swiss Quantum Technology inks 10M partnership with Californias D-Wave to expand quantum computing access in Europe - Silicon Canals - October 17th, 2025 [October 17th, 2025]
- Study on quantum thermalization from thermal initial states in a superconducting quantum computer - Nature - October 17th, 2025 [October 17th, 2025]
- Cybersecurity gives UT San Antonio a head start in the Texas quantum race - UT San Antonio - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Right Now? - TECHi - October 17th, 2025 [October 17th, 2025]
- How Quantum Computing Will Upend Cybersecurity - Boston Consulting Group - October 17th, 2025 [October 17th, 2025]
- Why Is Quantum Computing Inc. Stock Jumping Today? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2026 - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- Why D-Wave Quantum Stock Fell as Much as 11.5% on Thursday - AOL.com - October 17th, 2025 [October 17th, 2025]
- John Martinis and Michel Devoret win 2025 Nobel Prize in Physics - The Daily Nexus - October 17th, 2025 [October 17th, 2025]
- Biotechs bet on quantum shaping future of healthcare - - Global Venturing - October 17th, 2025 [October 17th, 2025]
- Can Rigetti's 264% Year-to-Date Rally Hold as Quantum Race Heats Up? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- 2025-10 - How Africas quantum tech could rewrite the future - Wits University - October 17th, 2025 [October 17th, 2025]
- Is IonQ a Better Pick Than RGTI and QBTS Amid the 2025 Quantum Boom? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- RGTX: Taking Advantage Of The Quantum Computing Momentum (NASDAQ:RGTX) - Seeking Alpha - October 17th, 2025 [October 17th, 2025]
- Oxford physicists achieve teleportation between two quantum supercomputers - The Brighter Side of News - October 15th, 2025 [October 15th, 2025]
- Isentroniq Raises 7.5M to Solve Wiring Bottleneck in Quantum Computers - EE Times Europe - October 15th, 2025 [October 15th, 2025]
- Financial, Other Industries Urged to Prepare for Quantum Computers - Dark Reading - October 15th, 2025 [October 15th, 2025]
- Beyond the Hype: 4 Monumental Risks to Quantum Computing Pure-Plays IonQ, Rigetti Computing, and D-Wave Quantum - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- Classiq Awarded Fast Company's 2025 Next Big Things in Tech - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- D-Wave Named Winner in Fast Companys 2025 Next Big Things in Tech Awards - Yahoo Finance - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - The Quantum Insider - October 15th, 2025 [October 15th, 2025]
- AI and quantum computing are converging. Both could get a boost - Yahoo! Tech - October 15th, 2025 [October 15th, 2025]
- Why D-Wave Quantum Stock Zoomed 6% Skyward on Tuesday - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - HPCwire - October 15th, 2025 [October 15th, 2025]
- This 250-year-old equation just got a quantum makeover - ScienceDaily - October 15th, 2025 [October 15th, 2025]
- The 5 next big things in computing, chips, and foundational technology for 2025 - Fast Company - October 15th, 2025 [October 15th, 2025]
- IBM inaugurates powerful computer that puts Spain in the race for quantum utility - EL PAS English - October 15th, 2025 [October 15th, 2025]
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- Are we ready for Quantum AI and Australias next cyber war? - The Australian - October 13th, 2025 [October 13th, 2025]
- Infleqtion And Silicon Light Machines Partner To Boost Quantum Computer Performance - Quantum Zeitgeist - October 13th, 2025 [October 13th, 2025]
- Rigetti, IonQ, and Other Quantum Stocks Might Be in a Bubble - Barron's - October 11th, 2025 [October 11th, 2025]
- From artificial atoms to quantum information machines: Inside the 2025 Nobel Prize in physics - The Conversation - October 11th, 2025 [October 11th, 2025]
- Quantum Brilliances Quoll Earns TIME Recognition as One of the Best Inventions of 2025 - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Researchers Propose Realizing (mostly) Quantum-autonomous Gates on Three Platforms, Reducing Reliance on Time-dependent Control - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- The Next Big Theme: Positioning For Early Growth In Quantum Computing - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - Nasdaq - October 11th, 2025 [October 11th, 2025]
- Quantum LDPC Codes Achieve Single-Shot Universality Via Code-Switching for Fault-Tolerant Computation - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum Advantage from Sampling Shallow Circuits Achieves Distance of from Classical Simulations - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum breakthrough in digital security: How Indian researchers achieved this, significance - The Indian Express - October 11th, 2025 [October 11th, 2025]
- Quantum memory may be closer to reality thanks to this new router - Earth.com - October 11th, 2025 [October 11th, 2025]
- IQC faculty secure more than $1 million in federal funding - University of Waterloo - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - Yahoo Finance - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Quantum Computer Security: Protecting Systems from Attacks in the Age of Cloud-Based Processors - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Michel Devoret, 2025 Physics Nobel laureate: 'I thought it was a prank. The quantum computer is not here yet' - Le Monde.fr - October 11th, 2025 [October 11th, 2025]
- Fields medalist: As of today we have no quantum computer. It does not exist. - Network World - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks That Could Make a Millionaire - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Discoveries behind quantum computers win the Nobel Prize in physics - Science News Explores - October 9th, 2025 [October 9th, 2025]
- Discoveries that enabled quantum computers win the Nobel Prize in physics - Science News - October 9th, 2025 [October 9th, 2025]
- Library exhibit marks 100 years since quantum theory revolution - northernstar.info - October 9th, 2025 [October 9th, 2025]
- Harvard team builds quantum computer that runs continuously for over two hours - Digital Watch Observatory - October 9th, 2025 [October 9th, 2025]
- Trio win Nobel prize for revealing quantum physics in action - Reuters - October 9th, 2025 [October 9th, 2025]
- Advances in quantum error correction showcased at Q2B25 - Physics World - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics awarded to 3 University of California faculty - University of California - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in Physics goes to early research that led to todays quantum computers - The Verge - October 9th, 2025 [October 9th, 2025]
- Nobel in physics awarded to scientists showing quantum mechanics on macro scale - The Washington Post - October 9th, 2025 [October 9th, 2025]
- 3 scientists at US universities win Nobel Prize in physics for advancing quantum technology - ABC7 Los Angeles - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics goes to three scientists who discovered bizarre quantum effect on large scales - Live Science - October 9th, 2025 [October 9th, 2025]
- Trio who made foundational quantum computing discovery bag Nobel physics prize - theregister.com - October 9th, 2025 [October 9th, 2025]
- Clarke, Devoret, and Martinis Awarded Nobel Prize in Physics for Macroscopic Quantum Discoveries - Quantum Computing Report - October 9th, 2025 [October 9th, 2025]
- Macroscopic quantum tunneling wins 2025s Nobel Prize in physics - Big Think - October 9th, 2025 [October 9th, 2025]
- The time to invest in quantum is now - PwC - October 7th, 2025 [October 7th, 2025]
- Nokia bets on sovereign quantum-safe connectivity - Light Reading - October 7th, 2025 [October 7th, 2025]
- ChattState and UTC Partner With Chattanooga Quantum Collaborative on $1.33M NSF Grant to Protect the Nations Power Grid + Build Quantum Workforce... - October 7th, 2025 [October 7th, 2025]
- Rigetti Computing: I Caught The Falling Knife, And My Hand Never Felt Better! (RGTI) - Seeking Alpha - October 7th, 2025 [October 7th, 2025]
- Quantum Computing Inc. Announces $750 Million Oversubscribed Private Placement of Common Stock Priced at the Market Under Nasdaq Rules - The Quantum... - October 7th, 2025 [October 7th, 2025]
- Investing in Quantum Computing: How IONQ, QUBT, RGTI & QBTS Stocks Are Revolutionizing Technology and Climate Solutions - CarbonCredits.com - October 7th, 2025 [October 7th, 2025]
- Quantum City to Host Annual Summit to Tackle Tech Adoption in a Changing World - The Quantum Insider - October 7th, 2025 [October 7th, 2025]
- D-Wave Quantum (QBTS) Soars to New High on Real-World Quantum Computer Significance - MSN - October 7th, 2025 [October 7th, 2025]