Scientists blast atoms with Fibonacci laser to make an "extra" dimension of time – Livescience.com
By firing a Fibonacci laser pulse at atoms inside a quantum computer, physicists have created a completely new, strange phase of matter that behaves as if it has two dimensions of time.
The new phase of matter, created by using lasers to rhythmically jiggle a strand of 10 ytterbium ions, enables scientists to store information in a far more error-protected way, thereby opening the path to quantum computers that can hold on to data for a long time without becoming garbled. The researchers outlined their findings in a paper published July 20 in the journal Nature (opens in new tab).
The inclusion of a theoretical "extra" time dimension "is a completely different way of thinking about phases of matter," lead author Philipp Dumitrescu, a researcher at the Flatiron Institute's Center for Computational Quantum Physics in New York City, said in a statement. "I've been working on these theory ideas for over five years, and seeing them come actually to be realized in experiments is exciting."
Related: Otherworldly 'time crystal' made inside Google quantum computer could change physics forever
The physicists didn't set out to create a phase with a theoretical extra time dimension, nor were they looking for a method to enable better quantum data storage. Instead, they were interested in creating a new phase of matter a new form in which matter can exist, beyond the standard solid, liquid, gas, plasma.
They set about building the new phase in the quantum computer company Quantinuum's H1 quantum processor, which consists of 10 ytterbium ions in a vacuum chamber that are precisely controlled by lasers in a device known as an ion trap.
Ordinary computers use bits, or 0s and 1s, to form the basis of all calculations. Quantum computers are designed to use qubits, which can also exist in a state of 0 or 1. But that's just about where the similarities end. Thanks to the bizarre laws of the quantum world, qubits can exist in a combination, or superposition, of both the 0 and 1 states until the moment they are measured, upon which they randomly collapse into either a 0 or a 1.
This strange behavior is the key to the power of quantum computing, as it allows qubits to link together through quantum entanglement, a process that Albert Einstein dubbed "spooky action at a distance." Entanglement couples two or more qubits to each other, connecting their properties so that any change in one particle will cause a change in the other, even if they are separated by vast distances. This gives quantum computers the ability to perform multiple calculations simultaneously, exponentially boosting their processing power over that of classical devices.
But the development of quantum computers is held back by a big flaw: Qubits don't just interact and get entangled with each other; because they cannot be perfectly isolated from the environment outside the quantum computer, they also interact with the outside environment, thus causing them to lose their quantum properties, and the information they carry, in a process called decoherence.
"Even if you keep all the atoms under tight control, they can lose their 'quantumness' by talking to their environment, heating up or interacting with things in ways you didn't plan," Dumitrescu said.
To get around these pesky decoherence effects and create a new, stable phase, the physicists looked to a special set of phases called topological phases. Quantum entanglement doesn't just enable quantum devices to encode information across the singular, static positions of qubits, but also to weave them into the dynamic motions and interactions of the entire material in the very shape, or topology, of the material's entangled states. This creates a "topological" qubit that encodes information in the shape formed by multiple parts rather than one part alone, making the phase much less likely to lose its information.
A key hallmark of moving from one phase to another is the breaking of physical symmetries the idea that the laws of physics are the same for an object at any point in time or space. As a liquid, the molecules in water follow the same physical laws at every point in space and in every direction. But if you cool water enough so that it transforms into ice, its molecules will pick regular points along a crystal structure, or lattice, to arrange themselves across. Suddenly, the water molecules have preferred points in space to occupy, and they leave the other points empty; the spatial symmetry of the water has been spontaneously broken.
Creating a new topological phase inside a quantum computer also relies on symmetry breaking, but with this new phase, the symmetry is not being broken across space, but time.
Related: World's 1st multinode quantum network is a breakthrough for the quantum internet
By giving each ion in the chain a periodic jolt with the lasers, the physicists wanted to break the continuous time symmetry of the ions at rest and impose their own time symmetry where the qubits remain the same across certain intervals in time that would create a rhythmic topological phase across the material.
But the experiment failed. Instead of inducing a topological phase that was immune to decoherence effects, the regular laser pulses amplified the noise from outside the system, destroying it less than 1.5 seconds after it was switched on.
After reconsidering the experiment, the researchers realized that to create a more robust topological phase, they would need to knot more than one time symmetry into the ion strand to decrease the odds of the system getting scrambled. To do this, they settled on finding a pulse pattern that did not repeat simply and regularly but nonetheless showed some kind of higher symmetry across time.
This led them to the Fibonacci sequence, in which the next number of the sequence is created by adding the previous two. Whereas a simple periodic laser pulse might just alternate between two laser sources (A, B, A, B, A, B, and so on), their new pulse train instead ran by combining the two pulses that came before (A, AB, ABA, ABAAB, ABAABABA, etc.).
This Fibonacci pulsing created a time symmetry that, just like a quasicrystal in space, was ordered without ever repeating. And just like a quasicrystal, the Fibonacci pulses also squish a higher dimensional pattern onto a lower dimensional surface. In the case of a spatial quasicrystal such as Penrose tiling, a slice of a five-dimensional lattice is projected onto a two-dimensional surface. When looking at the Fibonacci pulse pattern, we see two theoretical time symmetries get flattened into a single physical one.
"The system essentially gets a bonus symmetry from a nonexistent extra time dimension," the researchers wrote in the statement. The system appears as a material that exists in some higher dimension with two dimensions of time even if this may be physically impossible in reality.
When the team tested it, the new quasiperiodic Fibonacci pulse created a topographic phase that protected the system from data loss across the entire 5.5 seconds of the test. Indeed, they had created a phase that was immune to decoherence for much longer than others.
"With this quasi-periodic sequence, there's a complicated evolution that cancels out all the errors that live on the edge," Dumitrescu said. "Because of that, the edge stays quantum-mechanically coherent much, much longer than you'd expect."
Although the physicists achieved their aim, one hurdle remains to making their phase a useful tool for quantum programmers: integrating it with the computational side of quantum computing so that it can be input with calculations.
"We have this direct, tantalizing application, but we need to find a way to hook it into the calculations," Dumitrescu said. "That's an open problem we're working on."
Originally published on Live Science.
Read more:
Scientists blast atoms with Fibonacci laser to make an "extra" dimension of time - Livescience.com
- Quantum Computing 2025 Is it Turning the Corner? - HPCwire - January 1st, 2025 [January 1st, 2025]
- IBM will release the largest ever quantum computer in 2025 - New Scientist - January 1st, 2025 [January 1st, 2025]
- Betting on the Quantum Buzz: Righetti, D-Wave, and QUBTs Option Explosion - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- "Impossible" quantum teleportation achieved on normal internet cables - Earth.com - January 1st, 2025 [January 1st, 2025]
- It Takes A Village: Top 10 Quantum Partnerships of 2024 - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- TQIs 2025 Predictions For The Quantum Industry - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Future outlook: The impact of quantum computing on financial services - London Daily News - January 1st, 2025 [January 1st, 2025]
- Quantum computing is finally here. But what is it? - Crain's Chicago Business - January 1st, 2025 [January 1st, 2025]
- Google's quantum breakthrough is 'truly remarkable' - but there's more to do - ZDNet - January 1st, 2025 [January 1st, 2025]
- 2025 is the year of quantum computing, expert says - MSN - January 1st, 2025 [January 1st, 2025]
- The Years Biggest Breakthroughs in Science and Tech (Feat.: OK, but Seriously, What Is Quantum Computing?) - The Ringer - January 1st, 2025 [January 1st, 2025]
- Circuit-Knitting Technique Sews Up Nearly 8-Fold Reduction in Quantum Resource Overhead - The Quantum Insider - January 1st, 2025 [January 1st, 2025]
- Three New Error Correction Papers for the End of the Year - Quantum Computing Report - January 1st, 2025 [January 1st, 2025]
- The Quantum Race Heats Up! Is It Time to Bet on Quantum Computing Giants? - Jomfruland.net - January 1st, 2025 [January 1st, 2025]
- This Cryptographer Helps Quantum-Proof the Internet - IEEE Spectrum - January 1st, 2025 [January 1st, 2025]
- Why IBM Stock Offers a Strategic Edge in the Quantum Computing Race - Wall Street Pit - January 1st, 2025 [January 1st, 2025]
- Quantum-Si Isn't A Quantum Computing Company, And Shares Are Overvalued (NASDAQ:QSI) - Seeking Alpha - January 1st, 2025 [January 1st, 2025]
- MicroAlgo Inc. Announces the Launch of FULL Adder Operation Quantum Algorithm Technology Based on CPU Registers in Quantum Gate Computing - Yahoo... - January 1st, 2025 [January 1st, 2025]
- Quantum Breakthrough or Just Hype? Discover the Truth. - Jomfruland.net - January 1st, 2025 [January 1st, 2025]
- Google's quantum computer performs calculation in 5 minutes that would take longer than the universe's existence for a supercomputer - Warp News - December 25th, 2024 [December 25th, 2024]
- IBM to build new quantum computer in state-backed technology park - Daily Herald - December 20th, 2024 [December 20th, 2024]
- IBM and State of Illinois to Build National Quantum Algorithm Center in Chicago with Universities and Industries - IBM Newsroom - December 14th, 2024 [December 14th, 2024]
- Google's Quantum Chip Can Do in 5 Minutes What Would Take Other Computers 10 Septillion Years - PCMag - December 14th, 2024 [December 14th, 2024]
- Googles Willow Chip Has Quantum Developers Weeping With Joy - TechNewsWorld - December 14th, 2024 [December 14th, 2024]
- Google says its new chip may do computation in another universe - The Stack - December 14th, 2024 [December 14th, 2024]
- Google's Willow quantum chip breakthrough is hidden behind a questionable benchmark - Engadget - December 14th, 2024 [December 14th, 2024]
- Google Unveils the 105 Qubit Willow Chip and Demonstrates New Levels of RCS Benchmark Performance and Quantum Error Correction Below the Threshold -... - December 14th, 2024 [December 14th, 2024]
- Will Willow, Google's quantum computing chip, put bitcoin at risk? Here's what you should know - The Economic Times - December 14th, 2024 [December 14th, 2024]
- Google Just Made a Breakthrough in Quantum Computing With Its New Chip - Robb Report - December 14th, 2024 [December 14th, 2024]
- Why Googles Quantum Computer Chip Willow Is A Game Changer - Forbes - December 14th, 2024 [December 14th, 2024]
- Google has unveiled a new quantum computer chip that cracks a '30-year challenge in the field' - Business Insider - December 14th, 2024 [December 14th, 2024]
- Google hits a major milestone: A quantum computer performs 47 years' worth of calculations in seconds - Belles and Gals - December 14th, 2024 [December 14th, 2024]
- China's 504-qubit quantum computer chip marks a new domestic record will be globally available via the cloud - Tom's Hardware - December 14th, 2024 [December 14th, 2024]
- Google's WIllow chip is a big leap towards usable quantum computing but its claim of beating a classical computer by a 'septillion years' is... - December 14th, 2024 [December 14th, 2024]
- Colombias First Quantum Computer: Advancing Education, Research, and Technological Innovation - The Quantum Insider - December 5th, 2024 [December 5th, 2024]
- 100-Qubit Quantum Computer Delivered to Boost European Infrastructure - IoT World Today - December 5th, 2024 [December 5th, 2024]
- Pasqal 100-Qubit Quantum Computer Shipped to Jlich Supercomputing Centre - insideHPC - December 5th, 2024 [December 5th, 2024]
- From sand to superposition: A key step toward a powerful silicon quantum computer - Phys.org - November 28th, 2024 [November 28th, 2024]
- Could Rigetti Computing Become the Next Nvidia? - Yahoo Finance - November 28th, 2024 [November 28th, 2024]
- Computing at the Edge of Reality - Sponsor Content - Google - The Atlantic - November 28th, 2024 [November 28th, 2024]
- Are IONQ, FORM, and IBM Stocks Buys Ahead of the Quantum Revolution? - Yahoo Finance - November 28th, 2024 [November 28th, 2024]
- Telefonica Germany and AWS Collaborate to Test Quantum Technologies for Mobile Networks and 6G Development - The Quantum Insider - November 28th, 2024 [November 28th, 2024]
- Quantum Thanksgiving -- Why You Should Give Thanks (ThanQs?) For Quantum Mechanics During This Season of Gratitude - The Quantum Insider - November 28th, 2024 [November 28th, 2024]
- IonQ to Highlight Recent Quantum Innovations in Live Webinar, "IonQ's Full-Stack Quantum Innovation" - Business Wire - November 28th, 2024 [November 28th, 2024]
- Nobel Prize-Winning AI Breakthrough Paves the Way for Quantum Chemistry - SciTechDaily - November 28th, 2024 [November 28th, 2024]
- The Rise of Quantum Technology: Key Startups and Companies - Bizz Buzz - November 28th, 2024 [November 28th, 2024]
- Quantum Computing: Navigating the path to Q-Day through standards - TechNative - November 28th, 2024 [November 28th, 2024]
- Quantum Technologies Forum navigates present and future of quantum at USC - University of Southern California - November 16th, 2024 [November 16th, 2024]
- New 'gold-plated' superconductor could be the foundation for massively scaled-up quantum computers in the future - Livescience.com - November 16th, 2024 [November 16th, 2024]
- Quantum Technologies Could Have 8 Billion of Impact on UK Transport by 2035 - The Quantum Insider - November 16th, 2024 [November 16th, 2024]
- IBM launches R2 Heron processors that performs 5,000 two-qubit gate operations - Inceptive Mind - November 16th, 2024 [November 16th, 2024]
- Rigetti Computing Reports Third Quarter 2024 Financial Results and Business Updates - GlobeNewswire - November 16th, 2024 [November 16th, 2024]
- Qiskit Fall Fest brings the fun to quantum technology - The Lafayette - November 16th, 2024 [November 16th, 2024]
- Quantum computers touted as AI accelerator at Daesung Haegang Science Forum - The Korea JoongAng Daily - November 16th, 2024 [November 16th, 2024]
- IonQ Strengthens Technical Moat with its Latest Series of Issued Patents - Business Wire - November 16th, 2024 [November 16th, 2024]
- RIKEN, NTT, and Amplify Inc. Introduce General-Purpose Optical Quantum Computer - The Quantum Insider - November 12th, 2024 [November 12th, 2024]
- The Incredible Power of Quantum Memory - WIRED - November 10th, 2024 [November 10th, 2024]
- What Is Quantum AI? Everything to Know About This Far-Out Twist - CNET - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Yahoo Finance - November 10th, 2024 [November 10th, 2024]
- Why IonQ Stock Is Skyrocketing Today - The Motley Fool - November 10th, 2024 [November 10th, 2024]
- Weighty Subject: Is The Universe a Giant Quantum Gravity Computer? - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Massachusetts is launching a new quantum computing project. An expert explains why that's a big deal not just for the state but the world -... - November 10th, 2024 [November 10th, 2024]
- IonQ Strengthens Quantum Computing Capabilities through Partnerships with imec and NKT Photonics - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Quantum Computing Inc. 3Q Report: Focus on Loss Reduction While Building Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Chasing Impossible Vortices: Supersolid Discovery and the Future of Quantum Technology - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ and Ansys Partner to Integrate Quantum Computing for Accelerating CAE Simulations and Also to Use Ansys Tools for Designing Ions Quantum... - November 10th, 2024 [November 10th, 2024]
- IonQ to Increase Performance and Scale of Quantum Computers with Photonic Integrated Circuits in Collaboration with imec - Business Wire - November 10th, 2024 [November 10th, 2024]
- Calling All Gamers: Valens Games Reimagination of Gaming for a World With LLM, AI, and Quantum Computing - HSToday - November 10th, 2024 [November 10th, 2024]
- IBM, Guarding Against Tomorrows Threats Today - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Yonsei University Establishes South Koreas First 127-Qubit Quantum Computing Center for Industry and Research - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- Building the future of chips in the USA - IBM Research - November 10th, 2024 [November 10th, 2024]
- Chinese superconducting quantum computing power sold to overseas client - Global Times - November 10th, 2024 [November 10th, 2024]
- IonQ's Third-Quarter Results: Revenue Guidance Raised Amid Strategic Acquisitions, Partnerships - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- ASEAN FinTech funding grew more than 10-fold in past decade, GenAI and Quantum Computing to power new era: FinTech in ASEAN 2024 report - Yahoo... - November 10th, 2024 [November 10th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - Business Wire - November 8th, 2024 [November 8th, 2024]
- Computer Engineering faculty awarded to advance the compilation process in quantum computing - Rochester Institute of Technology - November 8th, 2024 [November 8th, 2024]
- Ansys and IonQ Are Bringing the Power of Quantum to the $10 Billion Dollar Computer-Aided Engineering Industry - StockTitan - November 8th, 2024 [November 8th, 2024]
- Quantum Machines and Nvidia use machine learning to get closer to an error-corrected quantum computer - TechCrunch - November 4th, 2024 [November 4th, 2024]
- Quantum computers are here but why do we need them and what will they be used for? - Livescience.com - November 2nd, 2024 [November 2nd, 2024]
- Rigetti and Riverlane Achieve Real-Time Quantum Error Correction on 84-Qubit System - The Quantum Insider - November 2nd, 2024 [November 2nd, 2024]