The Future of Quantum Computing: Harvard Team Achieves Major Error Correction Milestone – SciTechDaily

Quantum computing has made a significant leap forward with Harvards new platform, capable of dynamic reconfiguration and demonstrating low error rates in two-qubit entangling gates. This breakthrough, highlighted in a recent Nature paper, signals a major advancement in overcoming the quantum error correction challenge, positioning Harvards technology alongside other leading quantum computing methods. The work, a collaboration with MIT and others, marks a crucial step towards scalable, error-corrected quantum computing. Credit: SciTechDaily.com

Quantum computing technology, with its potential for unprecedented speed and efficiency, significantly surpasses the capabilities of even the most advanced supercomputers currently available. However, this innovative technology has not been widely scaled or commercialized, primarily because of its inherent limitations in error correction. Quantum computers, unlike classical ones, cannot correct errors by copying encoded data over and over. Scientists had to find another way.

Now,a new paper inNatureillustrates a Harvard quantum computing platforms potential to solve the longstanding problem known as quantum error correction.

Leading the Harvard team isquantum optics expert Mikhail Lukin, the Joshua and Beth Friedman University Professor in physics and co-director of theHarvard Quantum Initiative. The work reported in Nature was a collaboration among Harvard, MIT, and Boston-basedQuEra Computing. Also involved was the group ofMarkus Greiner, the George Vasmer Leverett Professor of Physics.

An effort spanning the last several years,the Harvard platformis built on an array ofvery cold, laser-trappedrubidium atoms. Each atom acts as a bit or a qubit as its called in the quantum world which can perform extremely fast calculations.

The teams chief innovation is configuring their neutral atom array to be able to dynamically change its layout by moving and connecting atoms this is called entangling in physics parlance mid-computation. Operations that entangle pairs of atoms, called two-qubit logic gates, are units of computing power.

Running a complicated algorithm on a quantum computer requires many gates. However, these gate operations are notoriously error-prone, and a buildup of errors renders the algorithm useless.

In the new paper, the team reports near-flawless performance of its two-qubit entangling gates with extremely low error rates. For the first time, they demonstrated the ability to entangle atoms with error rates below 0.5 percent. In terms of operation quality, this puts their technologys performance on par with other leading types of quantum computing platforms, like superconducting qubits and trapped-ion qubits.

However, Harvards approach has major advantages over these competitors due to its large system sizes, efficient qubit control, and ability to dynamically reconfigure the layout of atoms.

Weve established that this platform has low enough physical errors that you can actually envision large-scale, error-corrected devices based on neutral atoms, said first author Simon Evered, a Harvard Griffin Graduate School of Arts and Sciences student in Lukins group. Our error rates are low enough now that if we were to group atoms together into logical qubits where information is stored non-locally among the constituent atoms these quantum error-corrected logical qubits could have even lower errors than the individual atoms.

The Harvard teams advancesare reportedin the same issue of Nature as other innovations led by former Harvard graduate studentJeff Thompson, now at Princeton University, and former Harvard postdoctoral fellowManuel Endres, now at California Institute of Technology. Taken together, these advances lay the groundwork for quantum error-corrected algorithms and large-scale quantum computing. All of this means quantum computing on neutral atom arrays is showing the full breadth of its promise.

These contributions open the door for very special opportunities in scalable quantum computing and a truly exciting time for this entire field ahead, Lukin said.

Reference: High-fidelity parallel entangling gates on a neutral-atom quantum computer by Simon J. Evered, Dolev Bluvstein, Marcin Kalinowski, Sepehr Ebadi, Tom Manovitz, Hengyun Zhou, Sophie H. Li, Alexandra A. Geim, Tout T. Wang, Nishad Maskara, Harry Levine, Giulia Semeghini, Markus Greiner, Vladan Vuleti and Mikhail D. Lukin, 11 October 2023,Nature. DOI: 10.1038/s41586-023-06481-y

The research was supported by the U.S. Department of Energys Quantum Systems Accelerator Center; the Center for Ultracold Atoms; the National Science Foundation; the Army Research Office Multidisciplinary University Research Initiative; and the DARPAOptimization with Noisy Intermediate-Scale Quantum Devices program.

Read the rest here:
The Future of Quantum Computing: Harvard Team Achieves Major Error Correction Milestone - SciTechDaily

Related Posts

Comments are closed.