The Spooky Quantum Phenomenon You’ve Never Heard Of – Quanta Magazine
Perhaps the most famously weird feature of quantum mechanics is nonlocality: Measure one particle in an entangled pair whose partner is miles away, and the measurement seems to rip through the intervening space to instantaneously affect its partner. This spooky action at a distance (as Albert Einstein called it) has been the main focus of tests of quantum theory.
Nonlocality is spectacular. I mean, its like magic, said Adn Cabello, a physicist at the University of Seville in Spain.
But Cabello and others are interested in investigating a lesser-known but equally magical aspect of quantum mechanics: contextuality. Contextuality says that properties of particles, such as their position or polarization, exist only within the context of a measurement. Instead of thinking of particles properties as having fixed values, consider them more like words in language, whose meanings can change depending on the context: Timeflies likean arrow. Fruitflies likebananas.
Although contextuality has lived in nonlocalitys shadow for over 50 years, quantum physicists now consider it more of a hallmark feature of quantum systems than nonlocality is. A single particle, for instance, is a quantum system in which you cannot even think about nonlocality, since the particle is only in one location, said Brbara Amaral, a physicist at the University of So Paulo in Brazil. So [contextuality] is more general in some sense, and I think this is important to really understand the power of quantum systems and to go deeper into why quantum theory is the way it is.
Researchers have also found tantalizing links between contextuality and problems that quantum computers can efficiently solve that ordinary computers cannot; investigating these links could help guide researchers in developing new quantum computing approaches and algorithms.
And with renewed theoretical interest comes a renewed experimental effort to prove that our world is indeed contextual. In February, Cabello, in collaboration with Kihwan Kim at Tsinghua University in Beijing, China, published a paper in which they claimed to have performed the first loophole-free experimental test of contextuality.
The Northern Irish physicist John Stewart Bell is widely credited with showing that quantum systems can be nonlocal. By comparing the outcomes of measurements of two entangled particles, he showed with his eponymous theorem of 1965 that the high degree of correlations between the particles cant possibly be explained in terms of local hidden variables defining each ones separate properties. The information contained in the entangled pair must be shared nonlocally between the particles.
Bell also proved a similar theorem about contextuality. He and, separately, Simon Kochen and Ernst Specker showed that it is impossible for a quantum system to have hidden variables that define the values of all their properties in all possible contexts.
In Kochen and Speckers version of the proof, they considered a single particle with a quantum property called spin, which has both a magnitude and a direction. Measuring the spins magnitude along any direction always results in one of two outcomes: 1 or 0. The researchers then asked: Is it possible that the particle secretly knows what the result of every possible measurement will be before it is measured? In other words, could they assign a fixed value a hidden variable to all outcomes of all possible measurements at once?
Quantum theory says that the magnitudes of the spins along three perpendicular directions must obey the 101 rule: The outcomes of two of the measurements must be 1 and the other must be 0. Kochen and Specker used this rule to arrive at a contradiction. First, they assumed that each particle had a fixed, intrinsic value for each direction of spin. They then conducted a hypothetical spin measurement along some unique direction, assigning either 0 or 1 to the outcome. They then repeatedly rotated the direction of their hypothetical measurement and measured again, each time either freely assigning a value to the outcome or deducing what the value must be in order to satisfy the 101 rule together with directions they had previously considered.
They continued until, in the 117th direction, the contradiction cropped up. While they had previously assigned a value of 0 to the spin along this direction, the 101 rule was now dictating that the spin must be 1. The outcome of a measurement could not possibly return both 0 and 1. So the physicists concluded that there is no way a particle can have fixed hidden variables that remain the same regardless of context.
While the proof indicated that quantum theory demands contextuality, there was no way to actually demonstrate this through 117 simultaneous measurements of a single particle. Physicists have since devised more practical, experimentally implementable versions of the original Bell-Kochen-Specker theorem involving multiple entangled particles, where a particular measurement on one particle defines a context for the others.
In 2009, contextuality, a seemingly esoteric aspect of the underlying fabric of reality, got a direct application: One of the simplified versions of the original Bell-Kochen-Specker theorem was shown to be equivalent to a basic quantum computation.
The proof, named Mermins star after its originator, David Mermin, considered various combinations of contextual measurements that could be made on three entangled quantum bits, or qubits. The logic of how earlier measurements shape the outcomes of later measurements has become the basis for an approach called measurement-based quantum computing. The discovery suggested that contextuality might be key to why quantum computers can solve certain problems faster than classical computers an advantage that researchers have struggled mightily to understand.
Robert Raussendorf, a physicist at the University of British Columbia and a pioneer of measurement-based quantum computing, showed that contextuality is necessary for a quantum computer to beat a classical computer at some tasks, but he doesnt think its the whole story. Whether contextuality powers quantum computers is probably not exactly the right question to ask, he said. But we need to get there question by question. So we ask a question that we understand how to ask; we get an answer. We ask the next question.
Some researchers have suggested loopholes around Bell, Kochen and Speckers conclusion that the world is contextual. They argue that context-independent hidden variables havent been conclusively ruled out.
In February, Cabello and Kim announced that they had closed every plausible loophole by performing a loophole free Bell-Kochen-Specker experiment.
The experiment entailed measuring the spins of two entangled trapped ions in various directions, where the choice of measurement on one ion defined the context for the other ion. The physicists showed that, although making a measurement on one ion does not physically affect the other, it changes the context and hence the outcome of the second ions measurement.
Skeptics would ask: How can you be certain that the context created by the first measurement is what changed the second measurement outcome, rather than other conditions that might vary from experiment to experiment? Cabello and Kim closed this sharpness loophole by performing thousands of sets of measurements and showing that the outcomes dont change if the context doesnt. After ruling out this and other loopholes, they concluded that the only reasonable explanation for their results is contextuality.
Cabello and others think that these experiments could be used in the future to test the level of contextuality and hence, the power of quantum computing devices.
If you want to really understand how the world is working, said Cabello, you really need to go into the detail of quantum contextuality.
Read more here:
The Spooky Quantum Phenomenon You've Never Heard Of - Quanta Magazine
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]
- Quantum Computing is a cross industry revolution, and we want to be part of it - CTech - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Stocks Fall. Here's A Look At Upcoming News Events. - Investor's Business Daily - April 1st, 2025 [April 1st, 2025]
- Honeywell May Take Quantinuum Public in Next 2 Years. Its a Quantum Thing. - Barron's - April 1st, 2025 [April 1st, 2025]
- The 6 different types of quantum computing technology - TechTarget - April 1st, 2025 [April 1st, 2025]
- Nvidia to Open Quantum Computing Research Center in Boston This Year in a Landmark for Regions Tech Sector - The Harvard Crimson - April 1st, 2025 [April 1st, 2025]
- Quantum Threats Are HereWhy the Next Cybersecurity Boom May Already Be Underway - Baystreet.ca - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco Validate Quantum and AI Workflow Towards Generative Drug Discovery - The Quantum Insider - April 1st, 2025 [April 1st, 2025]
- The High Cost of Quantum Randomness Is Dropping - Quanta Magazine - April 1st, 2025 [April 1st, 2025]
- Beyond encryption: Why quantum computing might be more of a science boom than a cybersecurity bust - oodaloop.com - April 1st, 2025 [April 1st, 2025]
- NVIDIA (NVDA): One of the Best Quantum Computing Stocks to Buy Right Now? - Yahoo Finance - March 18th, 2025 [March 18th, 2025]
- I work at a leading quantum lab: Here are the qualifications recruiters in the field are looking for - Business Insider - March 18th, 2025 [March 18th, 2025]
- 5 wild things quantum computing could unlock now that Big Tech believes a breakthrough is within reach - Yahoo - March 18th, 2025 [March 18th, 2025]
- Controversy erupts over claims Microsoft invented a new state of matter - Salon - March 18th, 2025 [March 18th, 2025]
- Chinese quantum processor is 1 quadrillion times faster than the best supercomputer and it rivals Google's breakthrough Willow chip - Livescience.com - March 18th, 2025 [March 18th, 2025]
- IQM Quantum wants to be the European answer to Google and IBM - Sifted - March 18th, 2025 [March 18th, 2025]
- Twisting atomically thin materials could advance quantum computers - University of Rochester - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Stock Hits $11: Heres What This Top Analyst Predicts Ahead - TipRanks - March 18th, 2025 [March 18th, 2025]
- A Computer Has Achieved "Quantum Supremacy" On Real-World Problem For First Time, Company Claims - IFLScience - March 18th, 2025 [March 18th, 2025]
- INVESTOR ALERT: Pomerantz Law Firm Announces the Filing of a Class Action Against Quantum Computing Inc. and Certain Officers - QUBT - PR Newswire - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum Sets Benchmark with New Computing Advance - News and Statistics - IndexBox, Inc. - March 18th, 2025 [March 18th, 2025]
- Rigettis Rally Hits a Bump Are Insider Sales a Red Flag? - Wall Street Pit - March 18th, 2025 [March 18th, 2025]
- Quantum AI: What Is It and How Does It Work? - CNET - March 18th, 2025 [March 18th, 2025]
- D-Wave Shares Jump 46.9% on Friday - Should You Buy QBTS Stock? - TradingView - March 18th, 2025 [March 18th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims Breakthrough. Quantum Computing Stocks Gain. - Investor's Business Daily - March 13th, 2025 [March 13th, 2025]
- Physicists Just Witnessed a Quantum Phase Flip and Its More Mind-Bending Than Expected - SciTechDaily - March 13th, 2025 [March 13th, 2025]
- Beyond Classical: D-Wave First to Demonstrate Quantum Supremacy on Useful, Real-World Problem - Business Wire - March 13th, 2025 [March 13th, 2025]
- What is quantum computing and how it could change the tech world - Yahoo Finance - March 13th, 2025 [March 13th, 2025]
- Quantum Computing Giant IonQ Is Down More Than 60% From its All-Time High. Should You Buy The Dip? - The Motley Fool - March 13th, 2025 [March 13th, 2025]
- D-Wave Deep Dive: A Look at The Quantum Advantage Findings -- And The Questions That Remain - The Quantum Insider - March 13th, 2025 [March 13th, 2025]
- D-Wave claims to have achieved quantum supremacy at last, but others disagree - SiliconANGLE News - March 13th, 2025 [March 13th, 2025]
- D-Wave Claims It Achieves Quantum Supremacy. What the Breakthrough Means for Quantum Computing. - Barron's - March 13th, 2025 [March 13th, 2025]
- D-Wave Posts Wider-Than-Expected Loss. Why the Stock Is Rising After Earnings. - Barron's - March 13th, 2025 [March 13th, 2025]
- Nu Quantum Partners With The University of Sussex, Cisco, and Infineon to Scale Trapped Ion Quantum Computers - The Quantum Insider - March 13th, 2025 [March 13th, 2025]