Trapped ion quantum computer – Wikipedia
Proposed quantum computer implementation
A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force). Lasers are applied to induce coupling between the qubit states (for single qubit operations) or coupling between the internal qubit states and the external motional states (for entanglement between qubits).[1]
The fundamental operations of a quantum computer have been demonstrated experimentally with the currently highest accuracy in trapped ion systems. Promising schemes in development to scale the system to arbitrarily large numbers of qubits include transporting ions to spatially distinct locations in an array of ion traps, building large entangled states via photonically connected networks of remotely entangled ion chains, and combinations of these two ideas. This makes the trapped ion quantum computer system one of the most promising architectures for a scalable, universal quantum computer. As of April 2018, the largest number of particles to be controllably entangled is 20 trapped ions.[2][3][4]
The first implementation scheme for a controlled-NOT quantum gate was proposed by Ignacio Cirac and Peter Zoller in 1995,[5] specifically for the trapped ion system. The same year, a key step in the controlled-NOT gate was experimentally realized at NIST Ion Storage Group, and research in quantum computing began to take off worldwide.[citation needed]
In 2021, researchers from the University of Innsbruck presented a quantum computing demonstrator that fits inside two 19-inch server racks, the world's first quality standards-meeting compact trapped ion quantum computer.[7][6]
The electrodynamic ion trap currently used in trapped ion quantum computing research was invented in the 1950s by Wolfgang Paul (who received the Nobel Prize for his work in 1989[8]). Charged particles cannot be trapped in 3D by just electrostatic forces because of Earnshaw's theorem. Instead, an electric field oscillating at radio frequency (RF) is applied, forming a potential with the shape of a saddle spinning at the RF frequency. If the RF field has the right parameters (oscillation frequency and field strength), the charged particle becomes effectively trapped at the saddle point by a restoring force, with the motion described by a set of Mathieu equations.[1]
This saddle point is the point of minimized energy magnitude, | E ( x ) | {displaystyle |E(mathbf {x} )|} , for the ions in the potential field.[9] The Paul trap is often described as a harmonic potential well that traps ions in two dimensions (assume x ^ {displaystyle {hat {x}}} and y ^ {displaystyle {widehat {y}}} without loss of generality) and does not trap ions in the z ^ {displaystyle {widehat {z}}} direction. When multiple ions are at the saddle point and the system is at equilibrium, the ions are only free to move in z ^ {displaystyle {widehat {z}}} . Therefore, the ions will repel each other and create a vertical configuration in z ^ {displaystyle {widehat {z}}} , the simplest case being a linear strand of only a few ions.[10] Coulomb interactions of increasing complexity will create a more intricate ion configuration if many ions are initialized in the same trap.[1] Furthermore, the additional vibrations of the added ions greatly complicate the quantum system, which makes initialization and computation more difficult.[10]
Once trapped, the ions should be cooled such that k B T z {displaystyle k_{rm {B}}Tll hbar omega _{z}} (see Lamb Dicke regime). This can be achieved by a combination of Doppler cooling and resolved sideband cooling. At this very low temperature, vibrational energy in the ion trap is quantized into phonons by the energy eigenstates of the ion strand, which are called the center of mass vibrational modes. A single phonon's energy is given by the relation z {displaystyle hbar omega _{z}} . These quantum states occur when the trapped ions vibrate together and are completely isolated from the external environment. If the ions are not properly isolated, noise can result from ions interacting with external electromagnetic fields, which creates random movement and destroys the quantized energy states.[1]
The full requirements for a functional quantum computer are not entirely known, but there are many generally accepted requirements. David DiVincenzo outlined several of these criterion for quantum computing.[1]
Any two-level quantum system can form a qubit, and there are two predominant ways to form a qubit using the electronic states of an ion:
Hyperfine qubits are extremely long-lived (decay time of the order of thousands to millions of years) and phase/frequency stable (traditionally used for atomic frequency standards).[10] Optical qubits are also relatively long-lived (with a decay time of the order of a second), compared to the logic gate operation time (which is of the order of microseconds). The use of each type of qubit poses its own distinct challenges in the laboratory.
Ionic qubit states can be prepared in a specific qubit state using a process called optical pumping. In this process, a laser couples the ion to some excited states which eventually decay to one state which is not coupled to the laser. Once the ion reaches that state, it has no excited levels to couple to in the presence of that laser and, therefore, remains in that state. If the ion decays to one of the other states, the laser will continue to excite the ion until it decays to the state that does not interact with the laser. This initialization process is standard in many physics experiments and can be performed with extremely high fidelity (>99.9%).[11]
The system's initial state for quantum computation can therefore be described by the ions in their hyperfine and motional ground states, resulting in an initial center of mass phonon state of | 0 {displaystyle |0rangle } (zero phonons).[1]
Measuring the state of the qubit stored in an ion is quite simple. Typically, a laser is applied to the ion that couples only one of the qubit states. When the ion collapses into this state during the measurement process, the laser will excite it, resulting in a photon being released when the ion decays from the excited state. After decay, the ion is continually excited by the laser and repeatedly emits photons. These photons can be collected by a photomultiplier tube (PMT) or a charge-coupled device (CCD) camera. If the ion collapses into the other qubit state, then it does not interact with the laser and no photon is emitted. By counting the number of collected photons, the state of the ion may be determined with a very high accuracy (>99.9%).[citation needed]
One of the requirements of universal quantum computing is to coherently change the state of a single qubit. For example, this can transform a qubit starting out in 0 into any arbitrary superposition of 0 and 1 defined by the user. In a trapped ion system, this is often done using magnetic dipole transitions or stimulated Raman transitions for hyperfine qubits and electric quadrupole transitions for optical qubits. The term "rotation" alludes to the Bloch sphere representation of a qubit pure state. Gate fidelity can be greater than 99%.
The rotation operators R x ( ) {displaystyle R_{x}(theta )} and R y ( ) {displaystyle R_{y}(theta )} can be applied to individual ions by manipulating the frequency of an external electromagnetic field from and exposing the ions to the field for specific amounts of time. These controls create a Hamiltonian of the form H I i = / 2 ( S + exp ( i ) + S exp ( i ) ) {displaystyle H_{I}^{i}=hbar Omega /2(S_{+}exp(iphi )+S_{-}exp(-iphi ))} . Here, S + {displaystyle S_{+}} and S {displaystyle S_{-}} are the raising and lowering operators of spin (see Ladder operator). These rotations are the universal building blocks for single-qubit gates in quantum computing.[1]
To obtain the Hamiltonian for the ion-laser interaction, apply the JaynesCummings model. Once the Hamiltonian is found, the formula for the unitary operation performed on the qubit can be derived using the principles of quantum time evolution. Although this model utilizes the rotating wave approximation, it proves to be effective for the purposes of trapped-ion quantum computing.[1]
Besides the controlled-NOT gate proposed by Cirac and Zoller in 1995, many equivalent, but more robust, schemes have been proposed and implemented experimentally since. Recent theoretical work by JJ. Garcia-Ripoll, Cirac, and Zoller have shown that there are no fundamental limitations to the speed of entangling gates, but gates in this impulsive regime (faster than 1 microsecond) have not yet been demonstrated experimentally. The fidelity of these implementations has been greater than 99%.[12]
Quantum computers must be capable of initializing, storing, and manipulating many qubits at once in order to solve difficult computational problems. However, as previously discussed, a finite number of qubits can be stored in each trap while still maintaining their computational abilities. It is therefore necessary to design interconnected ion traps that are capable of transferring information from one trap to another. Ions can be separated from the same interaction region to individual storage regions and brought back together without losing the quantum information stored in their internal states. Ions can also be made to turn corners at a "T" junction, allowing a two dimensional trap array design. Semiconductor fabrication techniques have also been employed to manufacture the new generation of traps, making the 'ion trap on a chip' a reality. An example is the quantum charge-coupled device (QCCD) designed by D. Kielpinski, C. Monroe, and D.J. Wineland.[13] QCCDs resemble mazes of electrodes with designated areas for storing and manipulating qubits.
The variable electric potential created by the electrodes can both trap ions in specific regions and move them through the transport channels, which negates the necessity of containing all ions in a single trap. Ions in the QCCD's memory region are isolated from any operations and therefore the information contained in their states is kept for later use. Gates, including those that entangle two ion states, are applied to qubits in the interaction region by the method already described in this article.[13]
When an ion is being transported between regions in an interconnected trap and is subjected to a nonuniform magnetic field, decoherence can occur in the form of the equation below (see Zeeman effect).[13] This is effectively changes the relative phase of the quantum state. The up and down arrows correspond to a general superposition qubit state, in this case the ground and excited states of the ion.
| + | exp ( i ) | + | {displaystyle left|uparrow rightrangle +left|downarrow rightrangle longrightarrow exp(ialpha )left|uparrow rightrangle +left|downarrow rightrangle }
Additional relative phases could arise from physical movements of the trap or the presence of unintended electric fields. If the user could determine the parameter , accounting for this decoherence would be relatively simple, as known quantum information processes exist for correcting a relative phase.[1] However, since from the interaction with the magnetic field is path-dependent, the problem is highly complex. Considering the multiple ways that decoherence of a relative phase can be introduced in an ion trap, reimagining the ion state in a new basis that minimizes decoherence could be a way to eliminate the issue.
One way to combat decoherence is to represent the quantum state in a new basis called the decoherence-free subspaces, or DFS., with basis states | {displaystyle left|uparrow downarrow rightrangle } and | {displaystyle left|downarrow uparrow rightrangle } . The DFS is actually the subspace of two ion states, such that if both ions acquire the same relative phase, the total quantum state in the DFS will be unaffected.[13]
Trapped ion quantum computers theoretically meet all of DiVincenzo's criteria for quantum computing, but implementation of the system can be quite difficult. The main challenges facing trapped ion quantum computing are the initialization of the ion's motional states, and the relatively brief lifetimes of the phonon states.[1] Decoherence also proves to be challenging to eliminate, and is caused when the qubits interact with the external environment undesirably.[5]
The controlled NOT gate is a crucial component for quantum computing, as any quantum gate can be created by a combination of CNOT gates and single-qubit rotations.[10] It is therefore important that a trapped-ion quantum computer can perform this operation by meeting the following three requirements.
First, the trapped ion quantum computer must be able to perform arbitrary rotations on qubits, which are already discussed in the "arbitrary single-qubit rotation" section.
The next component of a CNOT gate is the controlled phase-flip gate, or the controlled-Z gate (see quantum logic gate). In a trapped ion quantum computer, the state of the center of mass phonon functions as the control qubit, and the internal atomic spin state of the ion is the working qubit. The phase of the working qubit will therefore be flipped if the phonon qubit is in the state | 1 {displaystyle |1rangle } .
Lastly, a SWAP gate must be implemented, acting on both the ion state and the phonon state.[1]
Two alternate schemes to represent the CNOT gates are presented in Michael Nielsen and Isaac Chuang's Quantum Computation and Quantum Information and Cirac and Zoller's Quantum Computation with Cold Trapped Ions.[1][5]
Go here to read the rest:
Trapped ion quantum computer - Wikipedia
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 6th, 2025 [July 6th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - ScienceBlog.com - July 6th, 2025 [July 6th, 2025]
- Helgoland 2025: the inside story of what happened on the quantum island - Physics World - July 6th, 2025 [July 6th, 2025]
- A shortcut to quantum randomness: Hacked qubit blocks achieve the unexpected - Interesting Engineering - July 6th, 2025 [July 6th, 2025]
- Physicists use 5,564-qubit quantum computer to model the death of our universe - The Brighter Side of News - July 6th, 2025 [July 6th, 2025]
- Small, room-temperature quantum computers that use light on the horizon after breakthrough, scientists say - Live Science - July 4th, 2025 [July 4th, 2025]
- Quantum computers are surprisingly random but that's a good thing - New Scientist - July 4th, 2025 [July 4th, 2025]
- Quantum computers could bring lost Bitcoin back to life: Heres how - Cointelegraph - July 4th, 2025 [July 4th, 2025]
- The Quantum Computing Industry Is Crowded. Why D-Wave, IonQ, and Rigetti Are a Buy. - Barron's - July 4th, 2025 [July 4th, 2025]
- Quantum tech is coming and with it a risk of cyber doomsday - politico.eu - July 4th, 2025 [July 4th, 2025]
- Quantum Annealers From D-Wave Optimise Robotic Inspection Of Industrial Components. - Quantum Zeitgeist - July 4th, 2025 [July 4th, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - Yahoo Finance - July 4th, 2025 [July 4th, 2025]
- QBTS: With Its Quantum Leap Priced In, Jump In On A Dip (NYSE:QBTS) - Seeking Alpha - July 4th, 2025 [July 4th, 2025]
- Buy this quantum computing stock that can rally more than 30%, Cantor says - CNBC - July 4th, 2025 [July 4th, 2025]
- A new tech race is on. Can Europe learn from the ones it lost? - politico.eu - July 4th, 2025 [July 4th, 2025]
- Rigetti Computing: Cantor's Bullish Call May Be Just the Start - MarketBeat - July 4th, 2025 [July 4th, 2025]
- The Quantum Data Center of the Future: Q&A - IoT World Today - July 4th, 2025 [July 4th, 2025]
- Quantum Computing Investments: A Once-in-a-Lifetime Opportunity? - Yahoo Finance - July 2nd, 2025 [July 2nd, 2025]
- Q&A: Companies are racing to develop the first useful quantum computerultracold neutral atoms could be the key - Phys.org - July 2nd, 2025 [July 2nd, 2025]
- Quantum Computers Just Reached the Holy Grail No Assumptions, No Limits - SciTechDaily - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - MSN - July 2nd, 2025 [July 2nd, 2025]
- The IBM Comeback Story That's Making Wall Street Pay Attention - Investopedia - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - The Daily Galaxy - July 2nd, 2025 [July 2nd, 2025]
- Measuring error rates of mid-circuit measurements - Nature - July 2nd, 2025 [July 2nd, 2025]
- IonQ Backs Texas Quantum Initiative To Boost Innovation - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Inside the Quantum Economy: Insights from the 2025 QED-C Report - AZoQuantum - July 2nd, 2025 [July 2nd, 2025]
- Six Ways Argonne Is Advancing Quantum Information Research - HPCwire - July 2nd, 2025 [July 2nd, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - MSN - July 2nd, 2025 [July 2nd, 2025]
- Researchers Target Quantum Advantage in Binding Energy Calculations - The Quantum Insider - July 2nd, 2025 [July 2nd, 2025]
- Pure Quantum: Rigetti's Journey From YC To NASDAQ And What Could Be Next - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Quantum machine learning (QML) is closer than you think: Why business leaders should start paying attention now - cio.com - July 2nd, 2025 [July 2nd, 2025]
- Quantum Threat: Bitcoins Fight To Secure Our Digital Future - Forbes - July 2nd, 2025 [July 2nd, 2025]
- The road to quantum datacentres goes beyond logical qubits - Computer Weekly - July 2nd, 2025 [July 2nd, 2025]
- Potential Solution Halves Testing Cost for Quantum Chips, Boosting Commercial Viability | Newswise - Newswise - June 29th, 2025 [June 29th, 2025]
- Scientists achieve teleportation between quantum computers for the first time ever - Earth.com - June 29th, 2025 [June 29th, 2025]
- Down 48%, Should You Buy the Dip on Rigetti Computing? - Yahoo Finance - June 29th, 2025 [June 29th, 2025]
- QuEra Computing, founded by researchers at Harvard University and the Massachusetts Institute of Te.. - - June 29th, 2025 [June 29th, 2025]
- Down 30%, Should You Buy the Dip on IonQ? - MSN - June 29th, 2025 [June 29th, 2025]
- New Hybrid QuantumClassical Computing Approach Used to Study Chemical Systems - Caltech - June 28th, 2025 [June 28th, 2025]
- Quantum, Moores Law, And AIs Future - Forbes - June 28th, 2025 [June 28th, 2025]
- Canada Sets Timeline to Shield Government Systems from Quantum Threat - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Is the UK Set for an AI-Powered Future with Quantum Boost? - AI Magazine - June 28th, 2025 [June 28th, 2025]
- 'Quantum AI' algorithms already outpace the fastest supercomputers, study says - Live Science - June 28th, 2025 [June 28th, 2025]
- IonQ vs IBM: Which Quantum Computing Stock Is the Better Buy Today? - Zacks Investment Research - June 28th, 2025 [June 28th, 2025]
- Quantum Computers Stealing Bitcoin? Stealing Ideas Is A Bigger Threat - Forbes - June 28th, 2025 [June 28th, 2025]
- IonQ And The University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Where Will Rigetti Computing Stock Be in 5 Years? - The Motley Fool - June 28th, 2025 [June 28th, 2025]
- Hearing Wrap Up: U.S. Must Update Technology to Prepare for the Quantum Age - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- U.S. Lawmakers Urge Action on Cybersecurity in Face of Quantum Threat - The Quantum Insider - June 26th, 2025 [June 26th, 2025]
- New chip could be the breakthrough the quantum computing industry has been waiting for - Live Science - June 26th, 2025 [June 26th, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - MSN - June 26th, 2025 [June 26th, 2025]
- Quantum Computing Achieves Protein Folding Breakthrough - IoT World Today - June 26th, 2025 [June 26th, 2025]
- Mace Opens Hearing on Quantum Computing and Advancing U.S. Cybersecurity - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- Report to Congress on Cyber Threats from Quantum Computing - USNI News - June 26th, 2025 [June 26th, 2025]
- Bringing post-quantum cryptography to Windows - InfoWorld - June 26th, 2025 [June 26th, 2025]
- Modeling a nitrogen-vacancy center with NVIDIA CUDA-Q Dynamics: University of Washington Capstone Project - Amazon.com - June 26th, 2025 [June 26th, 2025]
- ISC2025 Panel: Quantum Software Needs to Move Beyond Duct Tape But How? - HPCwire - June 26th, 2025 [June 26th, 2025]
- Q-CTRLs Fire Opal Integrated with Rigettis Ankaa-3, Demonstrating Significant Performance Boosts - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- IonQ and the University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - Business Wire - June 26th, 2025 [June 26th, 2025]
- IonQ to Participate in Quantum Korea 2025 and Support Quantum Hackathon for Emerging Talent - Business Wire - June 26th, 2025 [June 26th, 2025]
- 'This result has been more than a decade in the making': Millions of qubits on a single quantum processor now possible after cryogenic breakthrough -... - June 26th, 2025 [June 26th, 2025]
- A quantum opportunity; Colorado is the future of quantum computing, and a local nonprofit is part of the team - Montrose Daily Press - June 26th, 2025 [June 26th, 2025]
- IonQ and University of Washington Simulate Neutrinoless Double-Beta Decay on Quantum Computer - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- Government to Invest 645.4 Billion Won in Quantum Computer Development Over 8 Years - Businesskorea - June 26th, 2025 [June 26th, 2025]
- This Tech Giant Just Pulled the Curtain on a New Quantum Computer - 24/7 Wall St. - June 26th, 2025 [June 26th, 2025]
- IBM brings Fugaku supercomputer together with first quantum computer - SDxCentral - June 26th, 2025 [June 26th, 2025]
- At last, we are discovering what quantum computers will be useful for - New Scientist - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - IBM Newsroom - June 24th, 2025 [June 24th, 2025]
- The Year of Quantum: From concept to reality in 2025 - McKinsey & Company - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - PR Newswire - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Quantum breakthrough: Magic states now easier, faster, and way less noisy - ScienceDaily - June 24th, 2025 [June 24th, 2025]
- Unpacking quantum myths...and why they matter - Diginomica - June 24th, 2025 [June 24th, 2025]
- Bitcoins Countdown Has Begun: Experts Reveal When Quantum Computers Will Finally Shatter Its Legendary Encryption - Rude Baguette - June 24th, 2025 [June 24th, 2025]
- Six ways Argonne is advancing quantum information research - anl.gov - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - MarketScreener - June 24th, 2025 [June 24th, 2025]
- eleQtron selected as Technology Pioneer 2025 by the World Economic Forum - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Why Photonics is Essential for the Future of Quantum Innovation - AZoQuantum - June 24th, 2025 [June 24th, 2025]
- Microsoft Unveils a New 4-Dimension Geometrical Code for Quantum Error Correction - Quantum Computing Report - June 24th, 2025 [June 24th, 2025]
- A quantum satellite computer was launched into space for the first time: it was delivered to orbit by a SpaceX rocket - dev.ua - June 24th, 2025 [June 24th, 2025]