Trapped ion quantum computer – Wikipedia
Proposed quantum computer implementation
A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap (interacting through the Coulomb force). Lasers are applied to induce coupling between the qubit states (for single qubit operations) or coupling between the internal qubit states and the external motional states (for entanglement between qubits).[1]
The fundamental operations of a quantum computer have been demonstrated experimentally with the currently highest accuracy in trapped ion systems. Promising schemes in development to scale the system to arbitrarily large numbers of qubits include transporting ions to spatially distinct locations in an array of ion traps, building large entangled states via photonically connected networks of remotely entangled ion chains, and combinations of these two ideas. This makes the trapped ion quantum computer system one of the most promising architectures for a scalable, universal quantum computer. As of April 2018, the largest number of particles to be controllably entangled is 20 trapped ions.[2][3][4]
The first implementation scheme for a controlled-NOT quantum gate was proposed by Ignacio Cirac and Peter Zoller in 1995,[5] specifically for the trapped ion system. The same year, a key step in the controlled-NOT gate was experimentally realized at NIST Ion Storage Group, and research in quantum computing began to take off worldwide.[citation needed]
In 2021, researchers from the University of Innsbruck presented a quantum computing demonstrator that fits inside two 19-inch server racks, the world's first quality standards-meeting compact trapped ion quantum computer.[7][6]
The electrodynamic ion trap currently used in trapped ion quantum computing research was invented in the 1950s by Wolfgang Paul (who received the Nobel Prize for his work in 1989[8]). Charged particles cannot be trapped in 3D by just electrostatic forces because of Earnshaw's theorem. Instead, an electric field oscillating at radio frequency (RF) is applied, forming a potential with the shape of a saddle spinning at the RF frequency. If the RF field has the right parameters (oscillation frequency and field strength), the charged particle becomes effectively trapped at the saddle point by a restoring force, with the motion described by a set of Mathieu equations.[1]
This saddle point is the point of minimized energy magnitude, | E ( x ) | {displaystyle |E(mathbf {x} )|} , for the ions in the potential field.[9] The Paul trap is often described as a harmonic potential well that traps ions in two dimensions (assume x ^ {displaystyle {hat {x}}} and y ^ {displaystyle {widehat {y}}} without loss of generality) and does not trap ions in the z ^ {displaystyle {widehat {z}}} direction. When multiple ions are at the saddle point and the system is at equilibrium, the ions are only free to move in z ^ {displaystyle {widehat {z}}} . Therefore, the ions will repel each other and create a vertical configuration in z ^ {displaystyle {widehat {z}}} , the simplest case being a linear strand of only a few ions.[10] Coulomb interactions of increasing complexity will create a more intricate ion configuration if many ions are initialized in the same trap.[1] Furthermore, the additional vibrations of the added ions greatly complicate the quantum system, which makes initialization and computation more difficult.[10]
Once trapped, the ions should be cooled such that k B T z {displaystyle k_{rm {B}}Tll hbar omega _{z}} (see Lamb Dicke regime). This can be achieved by a combination of Doppler cooling and resolved sideband cooling. At this very low temperature, vibrational energy in the ion trap is quantized into phonons by the energy eigenstates of the ion strand, which are called the center of mass vibrational modes. A single phonon's energy is given by the relation z {displaystyle hbar omega _{z}} . These quantum states occur when the trapped ions vibrate together and are completely isolated from the external environment. If the ions are not properly isolated, noise can result from ions interacting with external electromagnetic fields, which creates random movement and destroys the quantized energy states.[1]
The full requirements for a functional quantum computer are not entirely known, but there are many generally accepted requirements. David DiVincenzo outlined several of these criterion for quantum computing.[1]
Any two-level quantum system can form a qubit, and there are two predominant ways to form a qubit using the electronic states of an ion:
Hyperfine qubits are extremely long-lived (decay time of the order of thousands to millions of years) and phase/frequency stable (traditionally used for atomic frequency standards).[10] Optical qubits are also relatively long-lived (with a decay time of the order of a second), compared to the logic gate operation time (which is of the order of microseconds). The use of each type of qubit poses its own distinct challenges in the laboratory.
Ionic qubit states can be prepared in a specific qubit state using a process called optical pumping. In this process, a laser couples the ion to some excited states which eventually decay to one state which is not coupled to the laser. Once the ion reaches that state, it has no excited levels to couple to in the presence of that laser and, therefore, remains in that state. If the ion decays to one of the other states, the laser will continue to excite the ion until it decays to the state that does not interact with the laser. This initialization process is standard in many physics experiments and can be performed with extremely high fidelity (>99.9%).[11]
The system's initial state for quantum computation can therefore be described by the ions in their hyperfine and motional ground states, resulting in an initial center of mass phonon state of | 0 {displaystyle |0rangle } (zero phonons).[1]
Measuring the state of the qubit stored in an ion is quite simple. Typically, a laser is applied to the ion that couples only one of the qubit states. When the ion collapses into this state during the measurement process, the laser will excite it, resulting in a photon being released when the ion decays from the excited state. After decay, the ion is continually excited by the laser and repeatedly emits photons. These photons can be collected by a photomultiplier tube (PMT) or a charge-coupled device (CCD) camera. If the ion collapses into the other qubit state, then it does not interact with the laser and no photon is emitted. By counting the number of collected photons, the state of the ion may be determined with a very high accuracy (>99.9%).[citation needed]
One of the requirements of universal quantum computing is to coherently change the state of a single qubit. For example, this can transform a qubit starting out in 0 into any arbitrary superposition of 0 and 1 defined by the user. In a trapped ion system, this is often done using magnetic dipole transitions or stimulated Raman transitions for hyperfine qubits and electric quadrupole transitions for optical qubits. The term "rotation" alludes to the Bloch sphere representation of a qubit pure state. Gate fidelity can be greater than 99%.
The rotation operators R x ( ) {displaystyle R_{x}(theta )} and R y ( ) {displaystyle R_{y}(theta )} can be applied to individual ions by manipulating the frequency of an external electromagnetic field from and exposing the ions to the field for specific amounts of time. These controls create a Hamiltonian of the form H I i = / 2 ( S + exp ( i ) + S exp ( i ) ) {displaystyle H_{I}^{i}=hbar Omega /2(S_{+}exp(iphi )+S_{-}exp(-iphi ))} . Here, S + {displaystyle S_{+}} and S {displaystyle S_{-}} are the raising and lowering operators of spin (see Ladder operator). These rotations are the universal building blocks for single-qubit gates in quantum computing.[1]
To obtain the Hamiltonian for the ion-laser interaction, apply the JaynesCummings model. Once the Hamiltonian is found, the formula for the unitary operation performed on the qubit can be derived using the principles of quantum time evolution. Although this model utilizes the rotating wave approximation, it proves to be effective for the purposes of trapped-ion quantum computing.[1]
Besides the controlled-NOT gate proposed by Cirac and Zoller in 1995, many equivalent, but more robust, schemes have been proposed and implemented experimentally since. Recent theoretical work by JJ. Garcia-Ripoll, Cirac, and Zoller have shown that there are no fundamental limitations to the speed of entangling gates, but gates in this impulsive regime (faster than 1 microsecond) have not yet been demonstrated experimentally. The fidelity of these implementations has been greater than 99%.[12]
Quantum computers must be capable of initializing, storing, and manipulating many qubits at once in order to solve difficult computational problems. However, as previously discussed, a finite number of qubits can be stored in each trap while still maintaining their computational abilities. It is therefore necessary to design interconnected ion traps that are capable of transferring information from one trap to another. Ions can be separated from the same interaction region to individual storage regions and brought back together without losing the quantum information stored in their internal states. Ions can also be made to turn corners at a "T" junction, allowing a two dimensional trap array design. Semiconductor fabrication techniques have also been employed to manufacture the new generation of traps, making the 'ion trap on a chip' a reality. An example is the quantum charge-coupled device (QCCD) designed by D. Kielpinski, C. Monroe, and D.J. Wineland.[13] QCCDs resemble mazes of electrodes with designated areas for storing and manipulating qubits.
The variable electric potential created by the electrodes can both trap ions in specific regions and move them through the transport channels, which negates the necessity of containing all ions in a single trap. Ions in the QCCD's memory region are isolated from any operations and therefore the information contained in their states is kept for later use. Gates, including those that entangle two ion states, are applied to qubits in the interaction region by the method already described in this article.[13]
When an ion is being transported between regions in an interconnected trap and is subjected to a nonuniform magnetic field, decoherence can occur in the form of the equation below (see Zeeman effect).[13] This is effectively changes the relative phase of the quantum state. The up and down arrows correspond to a general superposition qubit state, in this case the ground and excited states of the ion.
| + | exp ( i ) | + | {displaystyle left|uparrow rightrangle +left|downarrow rightrangle longrightarrow exp(ialpha )left|uparrow rightrangle +left|downarrow rightrangle }
Additional relative phases could arise from physical movements of the trap or the presence of unintended electric fields. If the user could determine the parameter , accounting for this decoherence would be relatively simple, as known quantum information processes exist for correcting a relative phase.[1] However, since from the interaction with the magnetic field is path-dependent, the problem is highly complex. Considering the multiple ways that decoherence of a relative phase can be introduced in an ion trap, reimagining the ion state in a new basis that minimizes decoherence could be a way to eliminate the issue.
One way to combat decoherence is to represent the quantum state in a new basis called the decoherence-free subspaces, or DFS., with basis states | {displaystyle left|uparrow downarrow rightrangle } and | {displaystyle left|downarrow uparrow rightrangle } . The DFS is actually the subspace of two ion states, such that if both ions acquire the same relative phase, the total quantum state in the DFS will be unaffected.[13]
Trapped ion quantum computers theoretically meet all of DiVincenzo's criteria for quantum computing, but implementation of the system can be quite difficult. The main challenges facing trapped ion quantum computing are the initialization of the ion's motional states, and the relatively brief lifetimes of the phonon states.[1] Decoherence also proves to be challenging to eliminate, and is caused when the qubits interact with the external environment undesirably.[5]
The controlled NOT gate is a crucial component for quantum computing, as any quantum gate can be created by a combination of CNOT gates and single-qubit rotations.[10] It is therefore important that a trapped-ion quantum computer can perform this operation by meeting the following three requirements.
First, the trapped ion quantum computer must be able to perform arbitrary rotations on qubits, which are already discussed in the "arbitrary single-qubit rotation" section.
The next component of a CNOT gate is the controlled phase-flip gate, or the controlled-Z gate (see quantum logic gate). In a trapped ion quantum computer, the state of the center of mass phonon functions as the control qubit, and the internal atomic spin state of the ion is the working qubit. The phase of the working qubit will therefore be flipped if the phonon qubit is in the state | 1 {displaystyle |1rangle } .
Lastly, a SWAP gate must be implemented, acting on both the ion state and the phonon state.[1]
Two alternate schemes to represent the CNOT gates are presented in Michael Nielsen and Isaac Chuang's Quantum Computation and Quantum Information and Cirac and Zoller's Quantum Computation with Cold Trapped Ions.[1][5]
Go here to read the rest:
Trapped ion quantum computer - Wikipedia
- What does a quantum computer sound like? This artist and scientist are about to find out - Financial Times - January 11th, 2026 [January 11th, 2026]
- Bipartisan Sens. Give Quantum Reauthorization Act Another Chance - MeriTalk - January 11th, 2026 [January 11th, 2026]
- 3 Quantum Computing Stocks That Could Make a Millionaire - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Infleqtion and Churchill X Move Forward on SPAC Combination - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- Quantum computing has advantages over traditional, but still in early innings: BMO (IONQ:NYSE) - Seeking Alpha - January 9th, 2026 [January 9th, 2026]
- D-Wave Buys Quantum Circuits in Shift to Higher Gear - EE Times - January 9th, 2026 [January 9th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - Nasdaq - January 9th, 2026 [January 9th, 2026]
- Quantum neural network may be able to cheat the uncertainty principle - New Scientist - January 9th, 2026 [January 9th, 2026]
- Q&A: What does cybersecurity look like in the quantum age? - Penn State University - January 9th, 2026 [January 9th, 2026]
- D-Wave Demo At CES 2026 And The Energy Efficiency Of Quantum Computing - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Quantum Computers Extract Scattering Phase Shift In One-Dimensional Systems Using Integrated Correlation Functions - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- How John Clarke's Nobel Prize-Winning Research Paved the Way for Quantum Computing - Berkeley Lab News Center (.gov) - January 9th, 2026 [January 9th, 2026]
- Circle Examines How Crypto and Web3 Ecosystems are Preparing Blockchains for the Quantum Era - Crowdfund Insider - January 9th, 2026 [January 9th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Quantum computing is closer than you think - Federal News Network - January 9th, 2026 [January 9th, 2026]
- Quantum computing company D-Wave acquires new tech in major merger - Washington Times - January 9th, 2026 [January 9th, 2026]
- Josephson junctions quantum computing building blocks are possible with only one superconductor, experiment confirms - Technology Org - January 9th, 2026 [January 9th, 2026]
- After a Year of Quantum Awareness, 2026 Becomes the Year of Quantum Security - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- The best quantum computing stock to buy hand over fist in 2026 - MSN - January 9th, 2026 [January 9th, 2026]
- Google Willow: The secrets of the world's most powerful quantum computer - BBC - January 8th, 2026 [January 8th, 2026]
- D-Wave: Quantums First Real Revenue Winner (NYSE:QBTS) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- D-Wave to Buy Quantum Circuits for $550 Million. Useful Computers Are Coming to Market. - Barron's - January 8th, 2026 [January 8th, 2026]
- DARPA seeks universal translator between different kinds of quantum computer - Breaking Defense - January 8th, 2026 [January 8th, 2026]
- Royal Bank, Telus back $130-million financing by quantum developer Photonic - The Globe and Mail - January 8th, 2026 [January 8th, 2026]
- Qubits Can be Cloned: Scientists Discover First Method to Safely Back up Quantum Information - The Quantum Insider - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Fredkin And Toffoli: The Architects Of Reversible Computation - Quantum Zeitgeist - January 8th, 2026 [January 8th, 2026]
- Quantum Resistance LLC on the Future of Digital Security in a World of Emerging Quantum Computing - International Business Times - January 8th, 2026 [January 8th, 2026]
- Moscow State University and Rosatom Test 72-Qubit Neutral-Atom Quantum Prototype - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 quantum computing stocks will skyrocket in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- D-Wave Rises On Quantum First - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Tech and compliance 2026: What to watch for in AI, cybersecurity and quantum computing - Compliance Week - January 8th, 2026 [January 8th, 2026]
- Using microwave pulses to plug leaks in quantum computers makes them more reliable - Phys.org - December 29th, 2025 [December 29th, 2025]
- 5 Major Quantum Computing Breakthroughs that Shaped 2025 - TipRanks - December 29th, 2025 [December 29th, 2025]
- D-Wave stock slides into year-end as quantum peers retreat in thin trade - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Trends in 2025: Data Reveals Hardware Bets, Cloud Growth And Security Focus - The Quantum Insider - December 29th, 2025 [December 29th, 2025]
- The Neglecton: How Mathematical 'Garbage' Saved The Quantum Computer - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Quantum science and technology: highlights of 2025 - Physics World - December 29th, 2025 [December 29th, 2025]
- Are These 2 Quantum Computing Stocks the Key to Decades of Wealth? - The Motley Fool - December 29th, 2025 [December 29th, 2025]
- The Man Who Knew Too Much: Why Ettore Majoranas 1938 disappearance still haunts quantum computing. - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Breaking The Code: How Peter Shor Proved Quantum Power Was Real - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Opinion: Quantum computing is the stock markets next big tech play and these stocks are still cheap - MarketWatch - December 29th, 2025 [December 29th, 2025]
- Quantum computing made measurable progress toward real-world use in 2025 - TechSpot - December 29th, 2025 [December 29th, 2025]
- IonQ drops with quantum peers into year-end, as investors weigh next catalysts - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Forget Rigetti Computing: This Quantum Stock Offers a Far Better Risk-Reward Right Now - Finviz - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Stocks: IonQ, Rigetti, D-Wave and QUBT Slide Into Year-EndWhat to Watch Before Mondays Open - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Wedbush Initiates Rigetti Computing (RGTI) with Outperform Rating Highlighting Decadelong Expertise in Superconducting Qubit Technology - Yahoo... - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Works - Now Investors Will See If the Stocks Do Too - - December 29th, 2025 [December 29th, 2025]
- If India moves fast on quantum, we can lead next tech revolution - Times of India - December 27th, 2025 [December 27th, 2025]
- Chile Sets 10-Year Strategy to Build Quantum And Biotechnology Industries - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Grover's Search: The Algorithm That Changed The Logic Of Discovery - Quantum Zeitgeist - December 27th, 2025 [December 27th, 2025]
- China Demonstrates Quantum Error Correction Using Microwaves, Narrowing Gap With Google - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Prediction: Rigetti Computing Stock Is Going to Plunge in 2026 - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- Guest Post Chile and Quantum Technologies: When Strategy Is Built on Real Capabilities - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Prediction: Rigetti Computing Stock Is Going to Plunge in 2026 - Nasdaq - December 27th, 2025 [December 27th, 2025]
- My Top 3 Quantum Computing Stocks to Buy in December - The Globe and Mail - December 27th, 2025 [December 27th, 2025]
- D-Wave Quantum (QBTS) Stock Slides After Fridays Selloff: Latest News, Forecasts, Analyst Targets, and What to Watch Before Monday - ts2.tech - December 27th, 2025 [December 27th, 2025]
- The Man Who Reimagined Math: David Deutsch And The Universal Quantum Computer - Quantum Zeitgeist - December 27th, 2025 [December 27th, 2025]
- Quantum Computer Company Xanadu Is Set to Go Public: Should Investors Buy the IPO? - Yahoo! Finance Canada - December 27th, 2025 [December 27th, 2025]
- Quantum Computing (QUBT) Soars 12.86% on Window-Dressing - Yahoo Finance - December 25th, 2025 [December 25th, 2025]
- IBM Is Positioned To Lead In Quantum Computing - Forbes - December 25th, 2025 [December 25th, 2025]
- My Top 3 Quantum Computing Stocks to Buy in December - The Motley Fool - December 25th, 2025 [December 25th, 2025]
- Scientists Just Made Teleportation a Reality With This Groundbreaking Experiment. Are Humans Next? - Popular Mechanics - December 25th, 2025 [December 25th, 2025]
- Quantum computers turned out to be more useful than expected in 2025 - New Scientist - December 25th, 2025 [December 25th, 2025]
- My Top 3 Quantum Computing Stocks to Buy in December - Nasdaq - December 25th, 2025 [December 25th, 2025]
- Will Quantum Computing Inc. (QUBT) stock keep its losing streak going in 2026? - MSN - December 25th, 2025 [December 25th, 2025]
- TQIs Top Quantum Business Stories of 2025 - The Quantum Insider - December 25th, 2025 [December 25th, 2025]
- Minimal time robust control for two superconducting qubits - Nature - December 25th, 2025 [December 25th, 2025]
- IonQ vs. Rigetti Computing: Which Quantum Computing Stock Will Outperform in 2026? - The Motley Fool - December 25th, 2025 [December 25th, 2025]
- D-Wave to Bring Commercial Quantum Computing to CES 2026, Showcasing its Award-Winning Technology and Real-World Customer Success Stories - Yahoo... - December 25th, 2025 [December 25th, 2025]
- Interested in D-Wave Quantum? Mark Your Calendars for January 27. - The Motley Fool - December 25th, 2025 [December 25th, 2025]
- EU Quantum Flagship Benchmarks Achieve Scalable Quantum Computing Performance Metrics - Quantum Zeitgeist - December 25th, 2025 [December 25th, 2025]
- Korean Quantum Startup Founder Says Global Ambition is Key to Tech Success - - December 25th, 2025 [December 25th, 2025]
- Andhra Pradesh Will Launch Quantum Computer In 2 Years With 85% Make In India Components - Trak.in - December 25th, 2025 [December 25th, 2025]
- Is IonQ Poised to Be the Quantum Stock Worth $50 Billion in 5 Years? - The Motley Fool - December 25th, 2025 [December 25th, 2025]
- Beyond The Bit: How The Solvay Conferences Paved The Way For Qubits - Quantum Zeitgeist - December 25th, 2025 [December 25th, 2025]
- Scientists build a quantum computer that can repair itself using recycled atoms - Phys.org - December 18th, 2025 [December 18th, 2025]
- Michio Kaku: How quantum computers compute in multiple universes at once - Big Think - December 14th, 2025 [December 14th, 2025]