What is a quantum computer? Explained with a simple example.
by YK Sugi
Hi everyone!
The other day, I visited D-Wave Systems in Vancouver, Canada. Its a company that makes cutting-edge quantum computers.
I got to learn a lot about quantum computers there, so Id like to share some of what I learned there with you in this article.
The goal of this article is to give you an accurate intuition of what a quantum computer is using a simple example.
This article will not require you to have prior knowledge of either quantum physics or computer science to be able to understand it.
Okay, lets get started.
Edit (Feb 26, 2019): I recently published a video about the same topic on my YouTube channel. I would recommend watching it (click here) before or after reading this article because I have added some additional, more nuanced arguments in the video.
Here is a one-sentence summary of what a quantum computer is:
There is a lot to unpack in this sentence, so let me walk you through what it is exactly using a simple example.
To explain what a quantum computer is, Ill need to first explain a little bit about regular (non-quantum) computers.
Now, a regular computer stores information in a series of 0s and 1s.
Different kinds of information, such as numbers, text, and images can be represented this way.
Each unit in this series of 0s and 1s is called a bit. So, a bit can be set to either 0 or 1.
A quantum computer does not use bits to store information. Instead, it uses something called qubits.
Each qubit can not only be set to 1 or 0, but it can also be set to 1 and 0. But what does that mean exactly?
Let me explain this with a simple example. This is going to be a somewhat artificial example. But its still going to be helpful in understanding how quantum computers work.
Now, suppose youre running a travel agency, and you need to move a group of people from one location to another.
To keep this simple, lets say that you need to move only 3 people for now Alice, Becky, and Chris.
And suppose that you have booked 2 taxis for this purpose, and you want to figure out who gets into which taxi.
Also, suppose here that youre given information about whos friends with who, and whos enemies with who.
Here, lets say that:
And suppose that your goal here is to divide this group of 3 people into the two taxis to achieve the following two objectives:
Okay, so this is the basic premise of this problem. Lets first think about how we would solve this problem using a regular computer.
To solve this problem with a regular, non-quantum computer, youll need first to figure out how to store the relevant information with bits.
Lets label the two taxis Taxi #1 and Taxi #0.
Then, you can represent who gets into which car with 3 bits.
For example, we can set the three bits to 0, 0, and 1 to represent:
Since there are two choices for each person, there are 2*2*2 = 8 ways to divide this group of people into two cars.
Heres a list of all possible configurations:
A | B | C0 | 0 | 00 | 0 | 10 | 1 | 00 | 1 | 11 | 0 | 01 | 0 | 11 | 1 | 01 | 1 | 1
Using 3 bits, you can represent any one of these combinations.
Now, using a regular computer, how would we determine which configuration is the best solution?
To do this, lets define how we can compute the score for each configuration. This score will represent the extent to which each solution achieves the two objectives I mentioned earlier:
Lets simply define our score as follows:
(the score of a given configuration) = (# friend pairs sharing the same car) - (# enemy pairs sharing the same car)
For example, suppose that Alice, Becky, and Chris all get into Taxi #1. With three bits, this can be expressed as 111.
In this case, there is only one friend pair sharing the same car Alice and Becky.
However, there are two enemy pairs sharing the same car Alice and Chris, and Becky and Chris.
So, the total score of this configuration is 1-2 = -1.
With all of this setup, we can finally go about solving this problem.
With a regular computer, to find the best configuration, youll need to essentially go through all configurations to see which one achieves the highest score.
So, you can think about constructing a table like this:
A | B | C | Score0 | 0 | 0 | -10 | 0 | 1 | 1 <- one of the best solutions0 | 1 | 0 | -10 | 1 | 1 | -11 | 0 | 0 | -11 | 0 | 1 | -11 | 1 | 0 | 1 <- the other best solution1 | 1 | 1 | -1
As you can see, there are two correct solutions here 001 and 110, both achieving the score of 1.
This problem is fairly simple. It quickly becomes too difficult to solve with a regular computer as we increase the number of people in this problem.
We saw that with 3 people, we need to go through 8 possible configurations.
What if there are 4 people? In that case, well need to go through 2*2*2*2 = 16 configurations.
With n people, well need to go through (2 to the power of n) configurations to find the best solution.
So, if there are 100 people, well need to go through:
This is simply impossible to solve with a regular computer.
How would we go about solving this problem with a quantum computer?
To think about that, lets go back to the case of dividing 3 people into two taxis.
As we saw earlier, there were 8 possible solutions to this problem:
A | B | C0 | 0 | 00 | 0 | 10 | 1 | 00 | 1 | 11 | 0 | 01 | 0 | 11 | 1 | 01 | 1 | 1
With a regular computer, using 3 bits, we were able to represent only one of these solutions at a time for example, 001.
However, with a quantum computer, using 3 qubits, we can represent all 8 of these solutions at the same time.
There are debates as to what it means exactly, but heres the way I think about it.
First, examine the first qubit out of these 3 qubits. When you set it to both 0 and 1, its sort of like creating two parallel worlds. (Yes, its strange, but just follow along here.)
In one of those parallel worlds, the qubit is set to 0. In the other one, its set to 1.
Now, what if you set the second qubit to 0 and 1, too? Then, its sort of like creating 4 parallel worlds.
In the first world, the two qubits are set to 00. In the second one, they are 01. In the third one, they are 10. In the fourth one, they are 11.
Similarly, if you set all three qubits to both 0 and 1, youd be creating 8 parallel worlds 000, 001, 010, 011, 100, 101, 110, and 111.
This is a strange way to think, but it is one of the correct ways to interpret how the qubits behave in the real world.
Now, when you apply some sort of computation on these three qubits, you are actually applying the same computation in all of those 8 parallel worlds at the same time.
So, instead of going through each of those potential solutions sequentially, we can compute the scores of all solutions at the same time.
With this particular example, in theory, your quantum computer would be able to find one of the best solutions in a few milliseconds. Again, thats 001 or 110 as we saw earlier:
A | B | C | Score0 | 0 | 0 | -10 | 0 | 1 | 1 <- one of the best solutions0 | 1 | 0 | -10 | 1 | 1 | -11 | 0 | 0 | -11 | 0 | 1 | -11 | 1 | 0 | 1 <- the other best solution1 | 1 | 1 | -1
In reality, to solve this problem, you would need to give your quantum computer two things:
Given these two things, your quantum computer will spit out one of the best solutions in a few milliseconds. In this case, thats 001 or 110 with a score of 1.
Now, in theory, a quantum computer is able to find one of the best solutions every time it runs.
However, in reality, there are errors when running a quantum computer. So, instead of finding the best solution, it might find the second-best solution, the third best solution, and so on.
These errors become more prominent as the problem becomes more and more complex.
So, in practice, you will probably want to run the same operation on a quantum computer dozens of times or hundreds of times. Then pick the best result out of the many results you get.
Even with the errors I mentioned, the quantum computer does not have the same scaling issue a regular computer suffers from.
When there are 3 people we need to divide into two cars, the number of operations we need to perform on a quantum computer is 1. This is because a quantum computer computes the score of all configurations at the same time.
When there are 4 people, the number of operations is still 1.
When there are 100 people, the number of operations is still 1. With a single operation, a quantum computer computes the scores of all 2 ~= 10 = one million million million million million configurations at the same time.
As I mentioned earlier, in practice, its probably best to run your quantum computer dozens of times or hundreds of times and pick the best result out of the many results you get.
However, its still much better than running the same problem on a regular computer and having to repeat the same type of computation one million million million million million times.
Special thanks to everyone at D-Wave Systems for patiently explaining all of this to me.
D-Wave recently launched a cloud environment for interacting with a quantum computer.
If youre a developer and would like actually to try using a quantum computer, its probably the easiest way to do so.
Its called Leap, and its at https://cloud.dwavesys.com/leap. You can use it for free to solve thousands of problems, and they also have easy-to-follow tutorials on getting started with quantum computers once you sign up.
Footnote:
Read more:
What is a quantum computer? Explained with a simple example.
- Scientists make 'magic state' breakthrough after 20 years without it, quantum computers can never be truly useful - Live Science - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- EIFO and the Novo Nordisk Foundation Acquire the Worlds Most Powerful Quantum Computer - Novo Nordisk Fonden - July 18th, 2025 [July 18th, 2025]
- Israel and US to forge $200m tech hub for AI and quantum science development - The Times of Israel - July 18th, 2025 [July 18th, 2025]
- Quantum code breaking? You'd get further with an 8-bit computer, an abacus, and a dog - theregister.com - July 18th, 2025 [July 18th, 2025]
- Is quantum computing the next big thing in stocks? - TheStreet - July 18th, 2025 [July 18th, 2025]
- What to do while pursuing the promise of quantum computing - Brookings - July 18th, 2025 [July 18th, 2025]
- Microsoft and Atom Computing Partner on Level 2 Quantum System for Nordic Users - The Quantum Insider - July 18th, 2025 [July 18th, 2025]
- Progress Toward Practical Areas of Quantum Technology - CSIS | Center for Strategic and International Studies - July 18th, 2025 [July 18th, 2025]
- Hybrid classical and quantum computing for enhanced glioma tumor classification using TCGA data - Nature - July 18th, 2025 [July 18th, 2025]
- Oxford Ionics And Iceberg Quantum Partner to Accelerate Fault-Tolerant Quantum Computing - The Quantum Insider - July 18th, 2025 [July 18th, 2025]
- Are We Truly Prepared for the Era of Quantum Computing? - Security Boulevard - July 18th, 2025 [July 18th, 2025]
- New quantum computer with great potential to boost Nordic research and innovation - Novo Nordisk Fonden - July 18th, 2025 [July 18th, 2025]
- Launching a Quantum Computer, Photonics Meets Electronics in a First-of-its-Kind Chip - Photonics Spectra - July 18th, 2025 [July 18th, 2025]
- Huge investment to build in Denmark the first level-2 quantum computer - The Copenhagen Post - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - The Motley Fool - July 18th, 2025 [July 18th, 2025]
- Oxford Ionics and Iceberg Quantum Partner to Design Fault-Tolerant Quantum Architecture - Quantum Computing Report - July 18th, 2025 [July 18th, 2025]
- Cornell And IBM Demonstrate Error-Resistant Quantum Computing Advance - Quantum Zeitgeist - July 18th, 2025 [July 18th, 2025]
- Quobly and Inria Partner to Advance Scalable, Sovereign Quantum Systems in France - Quantum Computing Report - July 18th, 2025 [July 18th, 2025]
- How IBM and Moderna (MRNA) Are Using Quantum Computing to Design Vaccines Faster - TipRanks - July 18th, 2025 [July 18th, 2025]
- Why D-Wave Quantum Stock Skyrocketed 74.3% in the First Half of 2025 -- and What Comes Next - The Motley Fool - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - Nasdaq - July 18th, 2025 [July 18th, 2025]
- IBM and Moderna Team Up on Quantum Study. What It Means for the World of Medicine. - Barron's - July 18th, 2025 [July 18th, 2025]
- Silicon Spin Qubits: Scaling Toward the Million-Qubit Era - EE Times Europe - July 18th, 2025 [July 18th, 2025]
- Why D-Wave Quantum Stock Skyrocketed 74.3% in the First Half of 2025 -- and What Comes Next - The Globe and Mail - July 18th, 2025 [July 18th, 2025]
- Universal Quantum and TUHH Partner on Scalable Quantum Software for 100 000-Qubit Machines - The Quantum Insider - July 16th, 2025 [July 16th, 2025]
- IonQ, D-Wave, and Rigetti Face Off Ahead of Earnings Whos Nearest to Commercial Breakthrough? - TipRanks - July 16th, 2025 [July 16th, 2025]
- Granite Geek: As quantum mechanics turns 100, it is sneaking into everyday life - Monadnock Ledger-Transcript - July 16th, 2025 [July 16th, 2025]
- The rise of women in quantum science in India and the legacy of Satyendra Nath Bose - Physics World - July 16th, 2025 [July 16th, 2025]
- BDx and Anyon launch hybrid quantum AI testbed in Singapore - Light Reading - July 16th, 2025 [July 16th, 2025]
- What Is RSA Encryption, And Did China Really Break It? - SlashGear - July 14th, 2025 [July 14th, 2025]
- D-Wave Quantum (QBTS) Loses 11.8% as 2 Tech Giants Could Threaten its Competitive Edge - MSN - July 14th, 2025 [July 14th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - Cyprus Mail - July 14th, 2025 [July 14th, 2025]
- Revolutionary Quantum-AI Drone Tech Transforms Military Defense and Weather Forecasting - Stock Titan - July 12th, 2025 [July 12th, 2025]
- How Post-Quantum Cryptography Affects Security and Encryption Algorithms - Cisco Blogs - July 12th, 2025 [July 12th, 2025]
- QUANTUM COMPUTING INVESTIGATION INITIATED BY FORMER LOUISIANA ATTORNEY GENERAL: Kahn Swick & Foti, LLC Investigates the Officers and Directors of... - July 12th, 2025 [July 12th, 2025]
- TRIUMF, Perimeter Institute, and D-Wave Collaborate on Quantum-AI for Particle Physics Simulation - Quantum Computing Report - July 12th, 2025 [July 12th, 2025]
- The next leap for the technology sector: quantum computing - TechRadar - July 12th, 2025 [July 12th, 2025]
- Forget ransomware - most firms think quantum computing is the biggest security risk to come - MSN - July 12th, 2025 [July 12th, 2025]
- Quantum Computers Could Break Encryption : Are We Ready for the Digital Apocalypse? - Geeky Gadgets - July 12th, 2025 [July 12th, 2025]
- Texas wants to lead in the next big thing in computing. But is it too late? - Austin American-Statesman - July 12th, 2025 [July 12th, 2025]
- Post-quantum cryptographic inventory the latest PQC buzzword and why you need to know it - Cybernews - July 12th, 2025 [July 12th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Yahoo Finance - July 10th, 2025 [July 10th, 2025]
- Is Rigetti Computing the Top Quantum Computing Stock for the Second Half of 2025? - Nasdaq - July 10th, 2025 [July 10th, 2025]
- CHAMP-ION Project: Why Europe Isnt Backing Down in the Quantum Computer Race - embedded.com - July 10th, 2025 [July 10th, 2025]
- Tiny quantum drumhead sends sound with 1-in-a-million losspoised to rewrite tech - ScienceDaily - July 10th, 2025 [July 10th, 2025]
- The Q-Day Countdown: What It Is and Why You Should Care - Security Boulevard - July 10th, 2025 [July 10th, 2025]
- Finland breaks quantum record with 1-millisecond qubit coherence - Interesting Engineering - July 10th, 2025 [July 10th, 2025]
- Quantum Breakthrough: Qubit Coherence Hits Record Millisecond Milestone - The Debrief - July 10th, 2025 [July 10th, 2025]
- Japan needs to take the quantum-technology leap - The Japan Times - July 10th, 2025 [July 10th, 2025]
- NPL quantum circuits imaging could unlock stable quantum computers - Innovation News Network - July 8th, 2025 [July 8th, 2025]
- Should You Buy Rigetti Computing Stock for Less Than $15? - The Motley Fool - July 8th, 2025 [July 8th, 2025]
- Individual defects in superconducting quantum circuits imaged for the first time - Phys.org - July 8th, 2025 [July 8th, 2025]
- What's the Story? Quantum computing meets telecom - Light Reading - July 8th, 2025 [July 8th, 2025]
- Photonic powerhouse: Light is driving the quantum revolution - Laser Focus World - July 8th, 2025 [July 8th, 2025]
- Quantum Computers Pose Long-Term Threat to Bitcoin Security - AInvest - July 8th, 2025 [July 8th, 2025]
- Quantum Computing 'Q-Day' Threatens Bitcoin (BTC) & Ethereum (ETH) as Singapore Tightens Crypto Regulations - Blockchain News - July 8th, 2025 [July 8th, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 6th, 2025 [July 6th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - ScienceBlog.com - July 6th, 2025 [July 6th, 2025]
- Helgoland 2025: the inside story of what happened on the quantum island - Physics World - July 6th, 2025 [July 6th, 2025]
- A shortcut to quantum randomness: Hacked qubit blocks achieve the unexpected - Interesting Engineering - July 6th, 2025 [July 6th, 2025]
- Physicists use 5,564-qubit quantum computer to model the death of our universe - The Brighter Side of News - July 6th, 2025 [July 6th, 2025]
- Small, room-temperature quantum computers that use light on the horizon after breakthrough, scientists say - Live Science - July 4th, 2025 [July 4th, 2025]
- Quantum computers are surprisingly random but that's a good thing - New Scientist - July 4th, 2025 [July 4th, 2025]
- Quantum computers could bring lost Bitcoin back to life: Heres how - Cointelegraph - July 4th, 2025 [July 4th, 2025]
- The Quantum Computing Industry Is Crowded. Why D-Wave, IonQ, and Rigetti Are a Buy. - Barron's - July 4th, 2025 [July 4th, 2025]
- Quantum tech is coming and with it a risk of cyber doomsday - politico.eu - July 4th, 2025 [July 4th, 2025]
- Quantum Annealers From D-Wave Optimise Robotic Inspection Of Industrial Components. - Quantum Zeitgeist - July 4th, 2025 [July 4th, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - Yahoo Finance - July 4th, 2025 [July 4th, 2025]
- QBTS: With Its Quantum Leap Priced In, Jump In On A Dip (NYSE:QBTS) - Seeking Alpha - July 4th, 2025 [July 4th, 2025]
- Buy this quantum computing stock that can rally more than 30%, Cantor says - CNBC - July 4th, 2025 [July 4th, 2025]
- A new tech race is on. Can Europe learn from the ones it lost? - politico.eu - July 4th, 2025 [July 4th, 2025]
- Rigetti Computing: Cantor's Bullish Call May Be Just the Start - MarketBeat - July 4th, 2025 [July 4th, 2025]
- The Quantum Data Center of the Future: Q&A - IoT World Today - July 4th, 2025 [July 4th, 2025]
- Quantum Computing Investments: A Once-in-a-Lifetime Opportunity? - Yahoo Finance - July 2nd, 2025 [July 2nd, 2025]
- Q&A: Companies are racing to develop the first useful quantum computerultracold neutral atoms could be the key - Phys.org - July 2nd, 2025 [July 2nd, 2025]
- Quantum Computers Just Reached the Holy Grail No Assumptions, No Limits - SciTechDaily - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - MSN - July 2nd, 2025 [July 2nd, 2025]
- The IBM Comeback Story That's Making Wall Street Pay Attention - Investopedia - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - The Daily Galaxy - July 2nd, 2025 [July 2nd, 2025]