What Is Quantum Computing? The Next Era of Computational …
When you first stumble across the term quantum computer, you might pass it off as some far-flung science fiction concept rather than a serious current news item.
But with the phrase being thrown around with increasing frequency, its understandable to wonder exactly what quantum computers are, and just as understandable to be at a loss as to where to dive in. Heres the rundown on what quantum computers are, why theres so much buzz around them, and what they might mean for you.
All computing relies on bits, the smallest unit of information that is encoded as an on state or an off state, more commonly referred to as a 1 or a 0, in some physical medium or another.
Most of the time, a bit takes the physical form of an electrical signal traveling over the circuits in the computers motherboard. By stringing multiple bits together, we can represent more complex and useful things like text, music, and more.
The two key differences between quantum bits and classical bits (from the computers we use today) are the physical form the bits take and, correspondingly, the nature of data encoded in them. The electrical bits of a classical computer can only exist in one state at a time, either 1 or 0.
Quantum bits (or qubits) are made of subatomic particles, namely individual photons or electrons. Because these subatomic particles conform more to the rules of quantum mechanics than classical mechanics, they exhibit the bizarre properties of quantum particles. The most salient of these properties for computer scientists is superposition. This is the idea that a particle can exist in multiple states simultaneously, at least until that state is measured and collapses into a single state. By harnessing this superposition property, computer scientists can make qubits encode a 1 and a 0 at the same time.
The other quantum mechanical quirk that makes quantum computers tick is entanglement, a linking of two quantum particles or, in this case, two qubits. When the two particles are entangled, the change in state of one particle will alter the state of its partner in a predictable way, which comes in handy when it comes time to get a quantum computer to calculate the answer to the problem you feed it.
A quantum computers qubits start in their 1-and-0 hybrid state as the computer initially starts crunching through a problem. When the solution is found, the qubits in superposition collapse to the correct orientation of stable 1s and 0s for returning the solution.
Aside from the fact that they are far beyond the reach of all but the most elite research teams (and will likely stay that way for a while), most of us dont have much use for quantum computers. They dont offer any real advantage over classical computers for the kinds of tasks we do most of the time.
However, even the most formidable classical supercomputers have a hard time cracking certain problems due to their inherent computational complexity. This is because some calculations can only be achieved by brute force, guessing until the answer is found. They end up with so many possible solutions that it would take thousands of years for all the worlds supercomputers combined to find the correct one.
The superposition property exhibited by qubits can allow supercomputers to cut this guessing time down precipitously. Classical computings laborious trial-and-error computations can only ever make one guess at a time, while the dual 1-and-0 state of a quantum computers qubits lets it make multiple guesses at the same time.
So, what kind of problems require all this time-consuming guesswork calculation? One example is simulating atomic structures, especially when they interact chemically with those of other atoms. With a quantum computer powering the atomic modeling, researchers in material science could create new compounds for use in engineering and manufacturing. Quantum computers are well suited to simulating similarly intricate systems like economic market forces, astrophysical dynamics, or genetic mutation patterns in organisms, to name only a few.
Amidst all these generally inoffensive applications of this emerging technology, though, there are also some uses of quantum computers that raise serious concerns. By far the most frequently cited harm is the potential for quantum computers to break some of the strongest encryption algorithms currently in use.
In the hands of an aggressive foreign government adversary, quantum computers could compromise a broad swath of otherwise secure internet traffic, leaving sensitive communications susceptible to widespread surveillance. Work is currently being undertaken to mature encryption ciphers based on calculations that are still hard for even quantum computers to do, but they are not all ready for prime-time, or widely adopted at present.
A little over a decade ago, actual fabrication of quantum computers was barely in its incipient stages. Starting in the 2010s, though, development of functioning prototype quantum computers took off. A number of companies have assembled working quantum computers as of a few years ago, with IBM going so far as to allow researchers and hobbyists to run their own programs on it via the cloud.
Despite the strides that companies like IBM have undoubtedly made to build functioning prototypes, quantum computers are still in their infancy. Currently, the quantum computers that research teams have constructed so far require a lot of overhead for executing error correction. For every qubit that actually performs a calculation, there are several dozen whose job it is to compensate for the ones mistake. The aggregate of all these qubits make what is called a logical qubit.
Long story short, industry and academic titans have gotten quantum computers to work, but they do so very inefficiently.
Fierce competition between quantum computer researchers is still raging, between big and small players alike. Among those who have working quantum computers are the traditionally dominant tech companies one would expect: IBM, Intel, Microsoft, and Google.
As exacting and costly of a venture as creating a quantum computer is, there are a surprising number of smaller companies and even startups that are rising to the challenge.
The comparatively lean D-Wave Systems has spurred many advances in the fieldand proved it was not out of contention by answering Googles momentous announcement with news of a huge deal with Los Alamos National Labs. Still, smaller competitors like Rigetti Computing are also in the running for establishing themselves as quantum computing innovators.
Depending on who you ask, youll get a different frontrunner for the most powerful quantum computer. Google certainly made its case recently with its achievement of quantum supremacy, a metric that itself Google more or less devised. Quantum supremacy is the point at which a quantum computer is first able to outperform a classical computer at some computation. Googles Sycamore prototype equipped with 54 qubits was able to break that barrier by zipping through a problem in just under three-and-a-half minutes that would take the mightiest classical supercomputer 10,000 years to churn through.
Not to be outdone, D-Wave boasts that the devices it will soon be supplying to Los Alamos weigh in at 5000 qubits apiece, although it should be noted that the quality of D-Waves qubits has been called into question before. IBM hasnt made the same kind of splash as Google and D-Wave in the last couple of years, but they shouldnt be counted out yet, either, especially considering their track record of slow and steady accomplishments.
Put simply, the race for the worlds most powerful quantum computer is as wide open as it ever was.
The short answer to this is not really, at least for the near-term future. Quantum computers require an immense volume of equipment, and finely tuned environments to operate. The leading architecture requires cooling to mere degrees above absolute zero, meaning they are nowhere near practical for ordinary consumers to ever own.
But as the explosion of cloud computing has proven, you dont need to own a specialized computer to harness its capabilities. As mentioned above, IBM is already offering daring technophiles the chance to run programs on a small subset of its Q System Ones qubits. In time, IBM and its competitors will likely sell compute time on more robust quantum computers for those interested in applying them to otherwise inscrutable problems.
But if you arent researching the kinds of exceptionally tricky problems that quantum computers aim to solve, you probably wont interact with them much. In fact, quantum computers are in some cases worse at the sort of tasks we use computers for every day, purely because quantum computers are so hyper-specialized. Unless you are an academic running the kind of modeling where quantum computing thrives, youll likely never get your hands on one, and never need to.
See the rest here:
What Is Quantum Computing? The Next Era of Computational ...
- China unveils quantum computer thats one quadrillion times faster than existing supercomputers - Yahoo Finance UK - March 7th, 2025 [March 7th, 2025]
- China unveils quantum computer that could spell new era of processors - The Independent - March 5th, 2025 [March 5th, 2025]
- Startup PsiQuantum says it is making millions of quantum computing chips - Reuters - March 1st, 2025 [March 1st, 2025]
- A quantum computing startup says it is already making millions of light-powered chips - The Conversation - March 1st, 2025 [March 1st, 2025]
- Quantum Breakthrough: Microsoft and Purdue Unlock the Future of Topological Qubits - SciTechDaily - March 1st, 2025 [March 1st, 2025]
- Interested in Quantum Computing Investing? Here Are 4 Fantastic Picks to Maximize Your Odds of Picking a Winner - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- If I Could Only Buy 1 Quantum Computing Stock, This Would Be It - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- Amazon unveils quantum chip, aiming to shave years off development time - Reuters - March 1st, 2025 [March 1st, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - March 1st, 2025 [March 1st, 2025]
- Microsoft makes quantum computing breakthrough - Drexel University The Triangle Online - March 1st, 2025 [March 1st, 2025]
- Google, Microsoft, and now Amazon: The quantum computing race is heating up - Quartz - March 1st, 2025 [March 1st, 2025]
- Groundbreaking qubit technology reduces errors in quantum computing - The Brighter Side of News - March 1st, 2025 [March 1st, 2025]
- Fortanix Tackles Quantum Computing Threats With New Algorithms - Dark Reading - March 1st, 2025 [March 1st, 2025]
- What Investors Need to Know About the Wild World of Quantum Computing - Barron's - March 1st, 2025 [March 1st, 2025]
- Quantum computing will be bigger than AI so why is no one talking about it? - The Hill - March 1st, 2025 [March 1st, 2025]
- It seems like something out of a movie - they successfully achieve the first quantum teleportation in history - Unin Rayo - March 1st, 2025 [March 1st, 2025]
- Amazon joins the quantum computing race with a chip designed for error correction - Engadget - March 1st, 2025 [March 1st, 2025]
- Amazon Unveils Ocelot Quantum Chip. Its the Latest Tech Giant to Move Into the Space. - Barron's - March 1st, 2025 [March 1st, 2025]
- Amazon says its new quantum computing chip will make error correction more efficient - The Verge - March 1st, 2025 [March 1st, 2025]
- Microsoft's Majorana 1 widened the quantum field. But are we any closer to a eureka moment? - Fast Company - March 1st, 2025 [March 1st, 2025]
- Amazon Bets Big on Quantum Computing With Ocelot-Fewer Qubits, Faster Results - Yahoo Finance - March 1st, 2025 [March 1st, 2025]
- A Once-in-a-Lifetime Market Opportunity: Is Alphabet or Microsoft Winning the Quantum Computing Race? - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- Quantum Computing Has Arrived; We Need To Prepare For Its Impact - Forbes - February 25th, 2025 [February 25th, 2025]
- Scientists create world's 1st chip that can protect data in the age of quantum computing attacks - Livescience.com - February 25th, 2025 [February 25th, 2025]
- DARPA Expands Quantum Initiative to Bring Quantum Computing One Step Closer - TipRanks - February 25th, 2025 [February 25th, 2025]
- QuEra and Deloitte Tohmatsu Join to Advance Quantum Innovations in Japan - The Quantum Insider - February 25th, 2025 [February 25th, 2025]
- Quantum innovation balances on commercial tightrope - ComputerWeekly.com - February 25th, 2025 [February 25th, 2025]
- 7 Quantum Computing Stocks That Could Supercharge Your Portfolio - The Motley Fool - February 25th, 2025 [February 25th, 2025]
- What Is Quantum Computing, and Why Does It Matter? - The Wall Street Journal - February 25th, 2025 [February 25th, 2025]
- Microsoft Reports a Win on Quantum Computing. What It Means for the Sector. - Barron's - February 25th, 2025 [February 25th, 2025]
- Microsofts Majorana Topological Chip An Advance 17 Years in The Making - The Quantum Insider - February 25th, 2025 [February 25th, 2025]
- This Chip Could Be the Massive Breakthrough Weve Been Waiting for in Quantum Computing - Popular Mechanics - February 25th, 2025 [February 25th, 2025]
- Northeastern researcher wins NSF award to cut costs and boost efficiency of quantum computing - Northeastern University - February 25th, 2025 [February 25th, 2025]
- A New State of Matter Just Changed the Future of Quantum Computing - SciTechDaily - February 25th, 2025 [February 25th, 2025]
- Microsoft Just Delivered Fantastic Quantum Computing News to Investors. Is the Stock a Buy? - The Motley Fool - February 25th, 2025 [February 25th, 2025]
- Microsoft's quantum computing breakthrough questioned by experts - Fortune - February 25th, 2025 [February 25th, 2025]
- Big Tech Gets Their Qubits in Line: Quantum Computing Adding Another Dimension to Pharma Innovation - geneonline - February 25th, 2025 [February 25th, 2025]
- Quantum Computing in the Palm of Your Hand - Money and Markets - February 25th, 2025 [February 25th, 2025]
- Microsoft overcomes quantum barrier with new particle - ComputerWeekly.com - February 25th, 2025 [February 25th, 2025]
- Quantum Computers Vs Garbage Excavators: The Race For The Lost Bitcoin - Forbes - February 25th, 2025 [February 25th, 2025]
- New Microsoft Quantum Computing Chip Could Revolutionize the Industry - DISCOVER Magazine - February 25th, 2025 [February 25th, 2025]
- ET Graphics: Majorana I, Willow and new frontiers of quantum computing - The Economic Times - February 25th, 2025 [February 25th, 2025]
- Microsoft has unveiled a new quantum computer chip. How does it work and will it transform technology? - ABC News - February 23rd, 2025 [February 23rd, 2025]
- Chinese superconducting quantum computer receives over 20 million global visits - Global Times - February 18th, 2025 [February 18th, 2025]
- A Teleportation Breakthrough for Quantum Computing Is Here - WIRED - February 18th, 2025 [February 18th, 2025]
- A Once-in-a-Lifetime Buying Opportunity: This Quantum Computing Stock Looks Primed to Skyrocket - The Motley Fool - February 18th, 2025 [February 18th, 2025]
- What's Going On With D-Wave Quantum Stock Today? - Benzinga - February 18th, 2025 [February 18th, 2025]
- Prediction: These 2 Quantum Computing Stocks Will Be the Biggest AI Winners of 2025 - The Motley Fool - February 18th, 2025 [February 18th, 2025]
- Cleveland Clinic, Miami University partner on quantum computing education - ideastream - February 18th, 2025 [February 18th, 2025]
- Will D-Wave Lead the Charge in Commercial Quantum Computing? - PUNE.NEWS - February 18th, 2025 [February 18th, 2025]
- Google (GOOGL) Races Ahead in Quantum Computing, Partnering with Promising Startups - TipRanks - February 18th, 2025 [February 18th, 2025]
- Telefnica and Biscay Partner to Advance Quantum Innovation with Fujitsu Digital Annealer - The Quantum Insider - February 18th, 2025 [February 18th, 2025]
- 1 Quantum Computing Stock That Could Be the Biggest AI Buy of 2025 - The Motley Fool - February 18th, 2025 [February 18th, 2025]
- D-Wave and Staque Introduce Quantum-Powered Optimization for Autonomous Agricultural Vehicles - The Quantum Insider - February 18th, 2025 [February 18th, 2025]
- 3 Stocks That Could Derail the AI Hype Train - Schaeffers Research - February 18th, 2025 [February 18th, 2025]
- IonQ: Competitive Wake-Up Call For Quantum Dreams (NYSE:IONQ) - Seeking Alpha - February 18th, 2025 [February 18th, 2025]
- Quantum computing, cyber security, quality food; Efforts to create centers of excellence will translate to jobs - MassLive.com - February 18th, 2025 [February 18th, 2025]
- Chinas Quantum Strategy and The Threat of Global Data-Centric Authoritarianism - The Quantum Insider - February 18th, 2025 [February 18th, 2025]
- Quantum Computing Breakthrough Brings Us Closer to Universal Simulation - mitechnews.com - February 18th, 2025 [February 18th, 2025]
- Unlocking the Future: Top Quantum Computing Stocks to Watch - La Noticia Digital - February 18th, 2025 [February 18th, 2025]
- IonQ Aims to Meet Big Targets Amid Soaring Investor Expectations - TipRanks - February 18th, 2025 [February 18th, 2025]
- Quantum computers have finally arrived, but will they ever be useful? - New Scientist - February 14th, 2025 [February 14th, 2025]
- Global visits to Chinas Origin Wukong quantum computer surpass 20m; majority of intl access from US - Global Times - February 14th, 2025 [February 14th, 2025]
- D-Wave Quantum Computer Used in Simulating Potential Universe Decay - HPCwire - February 14th, 2025 [February 14th, 2025]
- UN Year of Quantum Spurs Global Tech Giants Into Action - Technology Magazine - February 14th, 2025 [February 14th, 2025]
- Oxford University Team Makes Connections to Build a Quantum Supercomputer - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- The Answer to Whats Next in Computing - Brownstone Research - February 14th, 2025 [February 14th, 2025]
- $1 billion Capital of Quantum intiative to establish UMD, Maryland as quantum hub - The Diamondback - February 14th, 2025 [February 14th, 2025]
- Scientists Simulated a Quantum Apocalypse. Then the Universe Disappeared. - Popular Mechanics - February 14th, 2025 [February 14th, 2025]
- Nvidias Quantum Leap: Are We On the Brink of a Computing Revolution? - MotoPaddock - February 14th, 2025 [February 14th, 2025]
- Quantum to take center stage at OFC 2025 - LightWave Online - February 14th, 2025 [February 14th, 2025]
- D-Wave Announces On-Premises Systems Offering to Push Boundaries of Quantum-Fueled Research and Advance Quantum + AI Development - Business Wire - February 14th, 2025 [February 14th, 2025]
- Scientists Just Linked Two Quantum Computers With "Quantum Teleportation" for the First Time and It Changes Everything - ZME Science - February 14th, 2025 [February 14th, 2025]
- Rigetti Stock Gets a Massive 76% Price Target Boost - Wall Street Pit - February 14th, 2025 [February 14th, 2025]
- How Google CEO Sundar Pichai may have just agreed with Nvidia CEO Jensen Huang's sentence that wiped bill - The Times of India - February 14th, 2025 [February 14th, 2025]
- Revolutionary 5,000-Qubit Quantum Computer Now Available for Private Installation, German Research Giant First to Buy - StockTitan - February 14th, 2025 [February 14th, 2025]
- Quantum Leap: Oxfords Breakthrough Paves the Way for the Quantum Internet - Mi Valle - February 14th, 2025 [February 14th, 2025]
- Unveiling the Next Big Leap: Could Rigetti Be Your Best Quantum Investment Yet? - Mi Valle - February 14th, 2025 [February 14th, 2025]
- Will 2025 mark the beginning of practically useful quantum computers? - Observer Research Foundation - February 14th, 2025 [February 14th, 2025]
- D-Wave Announces On-Premises Advantage Quantum Systems for AI and HPC - HPCwire - February 14th, 2025 [February 14th, 2025]