ANL Special Colloquium on The Future of Computing – HPCwire
There are, of course, a myriad of ideas regarding computings future. At yesterdays Argonne National Laboratorys Directors Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm not (just) economic cost; were talking entropy here is fundamentally undermining computings progress such that it will never be able to solve todays biggest challenges.
The broad idea is that the steady abstracting away of informational content from each piece of modern computings complicated assemblage (chips, architecture, programming) inexorably increases the cumulative energy cost, leading toward a hard ceiling. Leaving aside, for a moment, the decline in Moores law (just a symptom really), it is the separation (abstraction) of information from direct computation thats the culprit argues Shankar. Every added step adds energy cost.
Nature, on the other hand, bakes information into things. Consider, said Shankar, how a string of amino acids folds into its intended 3-D conformation on a tiny energy budget and in a very short time just by interacting with its environment, and contrast that with the amount of compute required i.e. energy expended to accurately predict protein folding from a sequence of amino acids. Shankar, research technology manager at the SLAC National Laboratory and adjunct Stanford professor, argues computing must take a lesson from nature and strive to pack information more tightly into applications and compute infrastructure.
Information theory is a rich field with a history of rich debate. Turning theory into practice has often proven more difficult and messy. Shankar (and his colleagues) have been developing a formal framework for classifying the levels of information content in human-made computation schemes and natural systems in a way that permits direct comparison between the two. The resulting scale has eight classification levels (0-7).
Theres a lot to digest in Shankars talk. Rather than going off the rails here with a garbled explanation its worth noting that Argonne has archived the video and Shankar has a far-along paper thats expected in a couple of months. No doubt some of his ideas will stir conversation. Given that Argonne will be home to Aurora, the exascale supercomputer now being built at the lab, it was an appropriate site for a talk on the future of computing.
Before jumping into what the future may hold, heres a quick summary of Shankars two driving points 1) Moores law, or more properly the architecture and semiconductor technology on which it rests, is limited and 2) the growing absolute energy cost of information processing using traditional methods (von Neumann) are limiting:
A big part of the answer to question of how computing must progress, suggested Shankar, is to take a page from Feynmans reverberating idea not just for quantum computing and emulate the way nature computes, pack[ing] all of the information needed for the computing into the things themselves or at least by reducing abstraction as much as possible.
Argonne assembled an expert panel to bat Shankars ideas around. The panel included moderator Rick Stevens (associate laboratory director and Argonne distinguished fellow), Salman Habib (director, Argonne computational science division and Argonne distinguished fellow), Yanjing Li (assistant professor, department of computer science, University of Chicago), and Fangfang Xia (computer scientist, data science and learning division, ANL).
Few quibbled with the high-energy cost of computing as described by Shankar but they had a variety of perspectives on moving forward. One of the more intriguing comments came from Xia, an expert in neuromorphic computing. He suggested using neuromorphic systems to discover new algorithms is a potentially productive approach.
My answer goes back to the earlier point Sadas and Rick made which is, if were throwing away efficiency in the information power conversion process, why dont we stay with biological system for a bit longer. Theres this interesting field called synthetic biological intelligence. They are trying to do these brain-computer interfaces, not in a Neurolink way, because thats still shrouded in uncertainty. But there is a company and they grow these brain cells in a petri dish. Then they connect this to an Atari Pong game. And you can see that after just 10 minutes, these brain cells self-organize into neural networks, and they can learn to play the game, said Xia.
Keep in mind, this is 10 minutes in real life, its not a simulation time. Its only dozens of games, just like how we pick up games. So this data efficiency is enormous. What I find particularly fascinating about this is that in this experiment there was no optimization goal. There is no loss function you have to tweak. The system, when connected in this closed loop fashion, will just learn in an embodied way. That opens so many possibilities, you think about all these dishes, just consuming glucose, you can have them to learn latent representations, maybe to be used in digital models.
Li, a computer architecture expert, noted that general purpose computing infrastructure has existed for a long time.
I remember this is the same architecture of processor design I learned at school, and I still teach the same materials today. For the most part, when were trying to understand how CPUs work, and even some of the GPUs, those have been around for a long time. I dont think there has been a lot of very revolutionary kind of changes for those architectures. Theres a reason for that, because we have developed, good tool chains, the compiler tool change people are educated to understand and program and build those systems. So anytime we want to make a big change [it has] to be competitive and as usable as what we know of today, Li said.
On balance, she expects more incremental changes. I think its not going to be just a big jump and well get there tomorrow. We have to build on small steps looking at building on existing understanding and also evolving along with the application requirements. I do think that there will be places where we can increase energy efficiency. If were looking at the memory hierarchy, for example, we know caches and that it helps us with performance. But its also super inefficient from an energy performance standpoint. But this has worked for a long time, because traditional applications have good locality, but we are increasingly seeing new applications where [there] may not be as many localities so theres a way for innovation in the memory hierarchy path. For example, we can design different memory, kind of reference patterns and infrastructures or applications that do not activate locality, for example. That will be one way of making the whole computing system much more efficient.
Li noted the trend toward specialized computing was another promising approach: If we use a general-purpose computing system like a CPU, theres overhead that goes into fetching the instructions, decoding them. All of those are overheads are not directly solving the problem, but its just what you need to get the generality you need to solve all problems. Increasing specialization towards offloading different specialized tasks would be another kind of interesting perspective of approaching this problem.
There was an interesting exchange between Shankar and Stevens over the large amount of energy consumed in training todays large natural language processing models.
Shankar said, Im quoting from literature on deep neural networks or any of these image recognition networks. They scale quadratically with the number of data points. One of the latest things that is being hyped about in the last few weeks is a trillion parameter, natural language processing [model]. So here are the numbers. To train one of those models, it takes the energy equivalent to four cars being driven a whole year, just to train the model, including the manufacturing cost of the car. That is how much energy is spent in the training on this, so there is a real problem, right?
Not so fast countered Stevens. Consider using the same numbers for how much energy is going into Bitcoin, right? So the estimate is maybe something like 5 percent of global energy production. At least these neural network models are useful. Theyre not just used for natural language processing. You can use it for distilling knowledge. You can use them for imaging and so forth. I want to shift gears a little bit. Governments around the world and VCs are putting a lot of money into quantum computing, and based on what you were talking about, its not clear to me that thats actually the right thing we should be doing. We have lots of opportunities for alternative computing models, alternative architectures that could open up spaces that we know in principle can work. We have classical systems that can do this, he said.
Today, theres an army of computational scientists around the world seeking ways to advance computing, some of them focused on the energy aspect of the problem, others focused on other areas such on performance or capacity. It will be interesting to see if the framework and methodology embodied on Shankars forthcoming paper not only provokes discussion but also provides a concrete methodology for comparing computing system efficiency.
Link to ANL video: https://vimeo.com/event/2081535/17d0367863
Brief Shankar Bio
Sadasivan (Sadas) Shankar is Research Technology Manager at SLAC National Laboratory and Adjunct Professor in Stanford Materials Science and Engineering. He is also an Associate in the Department of Physics in Harvard Faculty of Arts and Sciences, and was the first Margaret and Will Hearst Visiting Lecturer in Harvard University and the first Distinguished Scientist in Residence at the Harvard Institute of Applied Computational Sciences. He has co-instructed classes related to materials, computing, and sustainability and was awarded Harvard University Teaching Excellence Award. He is involved in research in materials, chemistry, and specialized AI methods for complex problems in physical and natural sciences, and new frameworks for studying computing. He is a co-founder and the Chief Scientist in Material Alchemy, a last mile translational and independent venture for sustainable design of materials.
Dr. Shankar was a Senior Fellow in UCLA-IPAM during a program on Machine Learning and Many-body Physics, invited speaker in The Camille and Henry Dreyfus Foundation on application of Machine Learning for chemistry and materials, Carnegie Science Foundation panelist for Brain and Computing, National Academies speaker on Revolutions in Manufacturing through Mathematics, invited to White House event for Materials Genome, Visiting Lecturer in Kavli Institute of Theoretical Physics in UC-SB, and the first Intel Distinguished Lecturer in Caltech and MIT. He has given several colloquia and lectures in universities all over the world. Dr. Shankar also worked in the semiconductor industry in the areas of materials, reliability, processing, manufacturing, and is a co-inventor in over twenty patent filings. His work was also featured in the journal Science and as a TED talk.
Go here to read the rest:
ANL Special Colloquium on The Future of Computing - HPCwire
- 2 Top Quantum Computing Stocks to Buy in January - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- IonQ Achieves 99.99% Accuracy in Quantum Computing, Aiming to Build Ecosystem - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - Yahoo Finance - January 20th, 2026 [January 20th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- What Is the Best Quantum Computing Stock to Own for the Next 5 Years? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - Nasdaq - January 20th, 2026 [January 20th, 2026]
- Alphabet and Microsoft Achieve Quantum Computing Breakthroughs with Cash Flows Over $24 Billion - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Quantum Computing Advances Strongly Correlated Systems with Handover-Iterative VQE and SHCI Convergence - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- NVIDIAs Strategy Is Shaping The Future Of Quantum Computing - Forbes - January 20th, 2026 [January 20th, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Barchart.com - January 20th, 2026 [January 20th, 2026]
- Summit on quantum computing tomorrow - Times of India - January 20th, 2026 [January 20th, 2026]
- Jefferies Analyst Dumps Bitcoin Over Quantum Computing Fears, Buys Gold - Bitcoin Magazine - January 18th, 2026 [January 18th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 18th, 2026 [January 18th, 2026]
- Smart Investor: Bank Earnings, Index ETFs, and Quantum Computing Stocks - morningstar.com - January 18th, 2026 [January 18th, 2026]
- Why Quantum Computing Stock Plummeted 38% Last Year but Is Soaring in 2026 - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - Nasdaq - January 18th, 2026 [January 18th, 2026]
- Opinion: Will Quantum Computing Be a Quantum Leap for Higher Ed? - GovTech - January 18th, 2026 [January 18th, 2026]
- Fear that quantum computing is on the cusp of cracking cryptocurrency's encryption spurs a global investment firm to remove Bitcoin from... - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- Alphabet Invests in Quantum Computing with Capex of $93 Billion - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Neutral-atom arrays, a rapidly emerging quantum computing platform, get a boost from researchers - Phys.org - January 18th, 2026 [January 18th, 2026]
- Quantum Computing Could Be a $72 Billion Opportunity by 2035. Can IonQ Capture It? - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- A Wall Street analyst warns that quantum computing could eventually crack the cryptography of bitcoin - Business Insider - January 18th, 2026 [January 18th, 2026]
- BTQ Technologies Added To $524.5M VanEck Quantum Computing ETF - Quantum Zeitgeist - January 18th, 2026 [January 18th, 2026]
- Quantum Computing Threat Raises Doubts Over Bitcoin Security - Evrim Aac - January 18th, 2026 [January 18th, 2026]
- Jefferies Removes 10% Bitcoin Allocation Citing Quantum Computing Threats - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Jefferies Wood drops 10% bitcoin allocation over quantum computing fears - OODAloop - January 18th, 2026 [January 18th, 2026]
- Jefferies Strategist Dumps 10% Bitcoin Allocation Over Quantum Computing Fears - Yellow.com - January 18th, 2026 [January 18th, 2026]
- Jefferies Wood drops Bitcoin on threat from quantum computing - MSN - January 18th, 2026 [January 18th, 2026]
- If I Could Own Only 1 Quantum Computing Stock in 2026, This Would Be It - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Rigetti and Quantum Computing Stocks Are a Buy, Says Analyst. Look Past the Criticism of Both. - Barron's - January 16th, 2026 [January 16th, 2026]
- Jefferies Wood Drops Bitcoin on Threat From Quantum Computing - Bloomberg.com - January 16th, 2026 [January 16th, 2026]
- Jefferies' Wood drops 10% bitcoin allocation over quantum computing fears - The Block - January 16th, 2026 [January 16th, 2026]
- Rigetti, Quantum Computing initiated with bullish views at Rosenblatt - Seeking Alpha - January 16th, 2026 [January 16th, 2026]
- From Chat to Act: How Quantum Computing Power Fuels the Ascent of AI Agents - 36Kr - January 16th, 2026 [January 16th, 2026]
- Meet the Quantum Computing Stock That Billionaires Can't Get Enough Of (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- 2 No-Brainer Quantum Computing Stocks to Buy Hand Over Fist for 2026 - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Top Wall Street equity strategist exits Bitcoin over quantum computing threat - Crypto Briefing - January 16th, 2026 [January 16th, 2026]
- Jefferies Abandons Bitcoin and Shifts 10% Back into Gold amid Quantum Computing Fears - TipRanks - January 16th, 2026 [January 16th, 2026]
- Has Bitcoin peaked? Why Jefferies removes 10% allocation; quantum computing, gold & more - MSN - January 16th, 2026 [January 16th, 2026]
- IonQ's Biggest Advantage in Quantum Computing Could Be Its Biggest Weakness - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- With a Growing Quantum Computing Threat, Consider these 5 Stocks Before They Run - The Globe and Mail - January 16th, 2026 [January 16th, 2026]
- Quantum Computing Stocks IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Have Served Up an $840 Million Warning for Wall Street -... - January 16th, 2026 [January 16th, 2026]
- Jefferies withdraws from bitcoin, shifts to gold amid concerns of quantum computing - Mint - January 16th, 2026 [January 16th, 2026]
- Half of All Bitcoin Could Be Stolen in Hours When Quantum Computing Arrives, Says Jefferies - NDTV Profit - January 16th, 2026 [January 16th, 2026]
- Quantum Computing: Plenty Of Cash, Still Waiting On Traction (NASDAQ:QUBT) - Seeking Alpha - January 16th, 2026 [January 16th, 2026]
- From quantum computing to robotaxi rollouts: Tech trends expected to shape 2026 - Mainebiz - January 16th, 2026 [January 16th, 2026]
- Xanadu and Thorlabs partner to advance optical controls for photonic quantum computing - Stocktwits - January 16th, 2026 [January 16th, 2026]
- Project Eleven Secures $20 Million Series A to Protect Digital Assets from Quantum Threats - Quantum Computing Report - January 16th, 2026 [January 16th, 2026]
- EeroQ Demonstrates Scalable Control Architecture Capable of Controlling One Million Qubits with Less than 50 Control Lines - Quantum Computing Report - January 16th, 2026 [January 16th, 2026]
- If I Could Own Only 1 Quantum Computing Stock in 2026, This Would Be It - AOL.com - January 16th, 2026 [January 16th, 2026]
- Quantum Computing (QUBT) Stock Rises As Analyst Sees 'A Lot Of Ways To Win' - Benzinga - January 16th, 2026 [January 16th, 2026]
- Rigetti and quantum computing stocks are a buy, says analyst. Look past the criticism of both. - MSN - January 16th, 2026 [January 16th, 2026]
- Equal1: $60 Million Closed To Bring Quantum Computing To Standard Semiconductor Fabs - Pulse 2.0 - January 16th, 2026 [January 16th, 2026]
- Meet the Quantum Computing Stock That Billionaires Can't Get Enough Of (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - Nasdaq - January 16th, 2026 [January 16th, 2026]
- Quantum Computing Achieves Performance Gains with Thermodynamic Recycling and Information Erasure - Quantum Zeitgeist - January 16th, 2026 [January 16th, 2026]
- Want to Invest in Quantum Computing? These 3 Stocks Are Great Buys Right Now. - The Motley Fool - January 11th, 2026 [January 11th, 2026]
- A $550 Million Reason to Buy This Quantum Computing Stock Now - Barchart.com - January 11th, 2026 [January 11th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Barchart.com - January 11th, 2026 [January 11th, 2026]
- Want to invest in quantum computing? These 3 stocks are great buys right now. - MSN - January 11th, 2026 [January 11th, 2026]
- Assessing Rigetti Computing (RGTI) Valuation As Quantum Hype Builds Around Conferences And Hardware Updates - Yahoo Finance - January 11th, 2026 [January 11th, 2026]
- QuEra Computing Highlights Investor Perspective on Quantum Metrics and Architectures - TipRanks - January 11th, 2026 [January 11th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Coinbase Exec Warns Quantum Computing Threatens 33% of Bitcoin Supply Heres Why - Yahoo Finance - January 9th, 2026 [January 9th, 2026]
- Senators Introduce Bipartisan National Quantum Initiative Reauthorization Act of 2026 - Quantum Computing Report - January 9th, 2026 [January 9th, 2026]
- 3 Quantum Computing Stocks with Potential to Beat the Market 1/9/2026 - TipRanks - January 9th, 2026 [January 9th, 2026]
- Quantum Computing Market Is Projected To Grow USD 14.19 Billion by 2035, Reaching at a CAGR of 27.04% - openPR.com - January 9th, 2026 [January 9th, 2026]
- CEO reveals two main problems with scaling quantum computing to commercial use - Fox Business - January 9th, 2026 [January 9th, 2026]
- Quantum Computing Stocks Off To Good Start In 2026. But Fasten Your Seat Belts. - Investor's Business Daily - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 Quantum Computing Stocks Will Skyrocket in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Quantum Computing Stocks: D-Wave To Acquire Quantum Circuits In $550M Deal - Investor's Business Daily - January 8th, 2026 [January 8th, 2026]
- Error-correction technology to turn quantum computing into real-world power - Phys.org - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Quantum computing momentum grows: D-Wave announces first major breakthrough of 2026 - Fast Company - January 8th, 2026 [January 8th, 2026]
- Quantum Computing News: D-Wave Moves Into Gate-Based Systems as Funding and Global Expansion Pick Up - TipRanks - January 8th, 2026 [January 8th, 2026]
- Quantum Computing: What Investors Need to Know - Morningstar - January 8th, 2026 [January 8th, 2026]