ANL Special Colloquium on The Future of Computing – HPCwire
There are, of course, a myriad of ideas regarding computings future. At yesterdays Argonne National Laboratorys Directors Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm not (just) economic cost; were talking entropy here is fundamentally undermining computings progress such that it will never be able to solve todays biggest challenges.
The broad idea is that the steady abstracting away of informational content from each piece of modern computings complicated assemblage (chips, architecture, programming) inexorably increases the cumulative energy cost, leading toward a hard ceiling. Leaving aside, for a moment, the decline in Moores law (just a symptom really), it is the separation (abstraction) of information from direct computation thats the culprit argues Shankar. Every added step adds energy cost.
Nature, on the other hand, bakes information into things. Consider, said Shankar, how a string of amino acids folds into its intended 3-D conformation on a tiny energy budget and in a very short time just by interacting with its environment, and contrast that with the amount of compute required i.e. energy expended to accurately predict protein folding from a sequence of amino acids. Shankar, research technology manager at the SLAC National Laboratory and adjunct Stanford professor, argues computing must take a lesson from nature and strive to pack information more tightly into applications and compute infrastructure.
Information theory is a rich field with a history of rich debate. Turning theory into practice has often proven more difficult and messy. Shankar (and his colleagues) have been developing a formal framework for classifying the levels of information content in human-made computation schemes and natural systems in a way that permits direct comparison between the two. The resulting scale has eight classification levels (0-7).
Theres a lot to digest in Shankars talk. Rather than going off the rails here with a garbled explanation its worth noting that Argonne has archived the video and Shankar has a far-along paper thats expected in a couple of months. No doubt some of his ideas will stir conversation. Given that Argonne will be home to Aurora, the exascale supercomputer now being built at the lab, it was an appropriate site for a talk on the future of computing.
Before jumping into what the future may hold, heres a quick summary of Shankars two driving points 1) Moores law, or more properly the architecture and semiconductor technology on which it rests, is limited and 2) the growing absolute energy cost of information processing using traditional methods (von Neumann) are limiting:
A big part of the answer to question of how computing must progress, suggested Shankar, is to take a page from Feynmans reverberating idea not just for quantum computing and emulate the way nature computes, pack[ing] all of the information needed for the computing into the things themselves or at least by reducing abstraction as much as possible.
Argonne assembled an expert panel to bat Shankars ideas around. The panel included moderator Rick Stevens (associate laboratory director and Argonne distinguished fellow), Salman Habib (director, Argonne computational science division and Argonne distinguished fellow), Yanjing Li (assistant professor, department of computer science, University of Chicago), and Fangfang Xia (computer scientist, data science and learning division, ANL).
Few quibbled with the high-energy cost of computing as described by Shankar but they had a variety of perspectives on moving forward. One of the more intriguing comments came from Xia, an expert in neuromorphic computing. He suggested using neuromorphic systems to discover new algorithms is a potentially productive approach.
My answer goes back to the earlier point Sadas and Rick made which is, if were throwing away efficiency in the information power conversion process, why dont we stay with biological system for a bit longer. Theres this interesting field called synthetic biological intelligence. They are trying to do these brain-computer interfaces, not in a Neurolink way, because thats still shrouded in uncertainty. But there is a company and they grow these brain cells in a petri dish. Then they connect this to an Atari Pong game. And you can see that after just 10 minutes, these brain cells self-organize into neural networks, and they can learn to play the game, said Xia.
Keep in mind, this is 10 minutes in real life, its not a simulation time. Its only dozens of games, just like how we pick up games. So this data efficiency is enormous. What I find particularly fascinating about this is that in this experiment there was no optimization goal. There is no loss function you have to tweak. The system, when connected in this closed loop fashion, will just learn in an embodied way. That opens so many possibilities, you think about all these dishes, just consuming glucose, you can have them to learn latent representations, maybe to be used in digital models.
Li, a computer architecture expert, noted that general purpose computing infrastructure has existed for a long time.
I remember this is the same architecture of processor design I learned at school, and I still teach the same materials today. For the most part, when were trying to understand how CPUs work, and even some of the GPUs, those have been around for a long time. I dont think there has been a lot of very revolutionary kind of changes for those architectures. Theres a reason for that, because we have developed, good tool chains, the compiler tool change people are educated to understand and program and build those systems. So anytime we want to make a big change [it has] to be competitive and as usable as what we know of today, Li said.
On balance, she expects more incremental changes. I think its not going to be just a big jump and well get there tomorrow. We have to build on small steps looking at building on existing understanding and also evolving along with the application requirements. I do think that there will be places where we can increase energy efficiency. If were looking at the memory hierarchy, for example, we know caches and that it helps us with performance. But its also super inefficient from an energy performance standpoint. But this has worked for a long time, because traditional applications have good locality, but we are increasingly seeing new applications where [there] may not be as many localities so theres a way for innovation in the memory hierarchy path. For example, we can design different memory, kind of reference patterns and infrastructures or applications that do not activate locality, for example. That will be one way of making the whole computing system much more efficient.
Li noted the trend toward specialized computing was another promising approach: If we use a general-purpose computing system like a CPU, theres overhead that goes into fetching the instructions, decoding them. All of those are overheads are not directly solving the problem, but its just what you need to get the generality you need to solve all problems. Increasing specialization towards offloading different specialized tasks would be another kind of interesting perspective of approaching this problem.
There was an interesting exchange between Shankar and Stevens over the large amount of energy consumed in training todays large natural language processing models.
Shankar said, Im quoting from literature on deep neural networks or any of these image recognition networks. They scale quadratically with the number of data points. One of the latest things that is being hyped about in the last few weeks is a trillion parameter, natural language processing [model]. So here are the numbers. To train one of those models, it takes the energy equivalent to four cars being driven a whole year, just to train the model, including the manufacturing cost of the car. That is how much energy is spent in the training on this, so there is a real problem, right?
Not so fast countered Stevens. Consider using the same numbers for how much energy is going into Bitcoin, right? So the estimate is maybe something like 5 percent of global energy production. At least these neural network models are useful. Theyre not just used for natural language processing. You can use it for distilling knowledge. You can use them for imaging and so forth. I want to shift gears a little bit. Governments around the world and VCs are putting a lot of money into quantum computing, and based on what you were talking about, its not clear to me that thats actually the right thing we should be doing. We have lots of opportunities for alternative computing models, alternative architectures that could open up spaces that we know in principle can work. We have classical systems that can do this, he said.
Today, theres an army of computational scientists around the world seeking ways to advance computing, some of them focused on the energy aspect of the problem, others focused on other areas such on performance or capacity. It will be interesting to see if the framework and methodology embodied on Shankars forthcoming paper not only provokes discussion but also provides a concrete methodology for comparing computing system efficiency.
Link to ANL video: https://vimeo.com/event/2081535/17d0367863
Brief Shankar Bio
Sadasivan (Sadas) Shankar is Research Technology Manager at SLAC National Laboratory and Adjunct Professor in Stanford Materials Science and Engineering. He is also an Associate in the Department of Physics in Harvard Faculty of Arts and Sciences, and was the first Margaret and Will Hearst Visiting Lecturer in Harvard University and the first Distinguished Scientist in Residence at the Harvard Institute of Applied Computational Sciences. He has co-instructed classes related to materials, computing, and sustainability and was awarded Harvard University Teaching Excellence Award. He is involved in research in materials, chemistry, and specialized AI methods for complex problems in physical and natural sciences, and new frameworks for studying computing. He is a co-founder and the Chief Scientist in Material Alchemy, a last mile translational and independent venture for sustainable design of materials.
Dr. Shankar was a Senior Fellow in UCLA-IPAM during a program on Machine Learning and Many-body Physics, invited speaker in The Camille and Henry Dreyfus Foundation on application of Machine Learning for chemistry and materials, Carnegie Science Foundation panelist for Brain and Computing, National Academies speaker on Revolutions in Manufacturing through Mathematics, invited to White House event for Materials Genome, Visiting Lecturer in Kavli Institute of Theoretical Physics in UC-SB, and the first Intel Distinguished Lecturer in Caltech and MIT. He has given several colloquia and lectures in universities all over the world. Dr. Shankar also worked in the semiconductor industry in the areas of materials, reliability, processing, manufacturing, and is a co-inventor in over twenty patent filings. His work was also featured in the journal Science and as a TED talk.
Go here to read the rest:
ANL Special Colloquium on The Future of Computing - HPCwire
- Rigetti vs. Quantum Computing: Which Quantum Stock Is a Smarter Bet? - Zacks Investment Research - July 30th, 2025 [July 30th, 2025]
- World Day Against Trafficking in Persons: Can AI and quantum computing turn the tide? - Finextra Research - July 30th, 2025 [July 30th, 2025]
- SoftBank Uses Quantum Computing to Optimize 5G Base Stations - The Fast Mode - July 30th, 2025 [July 30th, 2025]
- Keysight Technologies and the Quantum Computing Infrastructure Revolution - AInvest - July 30th, 2025 [July 30th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - Yahoo Finance - July 28th, 2025 [July 28th, 2025]
- 3 Quantum Computing Stocks with Positive Investor Sentiment 7/28/2025 - TipRanks - July 28th, 2025 [July 28th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- D-Wave Quantum Inc. Stock (QBTS) Opinions on Quantum Computing Surge - Quiver Quantitative - July 28th, 2025 [July 28th, 2025]
- Could a Quantum Computing Bubble Be About to Pop? History Offers a Clear Answer - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- After Soaring 40% in July, Is It Too Late to Buy This Supercharged Quantum Computing Stock? - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- SuperQ Quantum and Economic Development Lethbridge Hosting Masterclass on Business Optimization Using Quantum Computing with Approximately One Hundred... - July 28th, 2025 [July 28th, 2025]
- Quantum Computing Stocks: Market Pros Flag Names Investors Should Watch - Business Insider - July 27th, 2025 [July 27th, 2025]
- The University of Chicago Partners with IBM to Strengthen Quantum Computing Startups in Illinois - Polsky Center for Entrepreneurship and Innovation - July 27th, 2025 [July 27th, 2025]
- After Aerospace, Quantum Computing Tussle Erupts Between Andhra Pradesh And Karnataka - NDTV - July 27th, 2025 [July 27th, 2025]
- Gov. Pritzker Announces Infleqtion to Accelerate Quantum Computing in Illinois and Locate Computing Headquarters in Chicago - RiverBender.com - July 27th, 2025 [July 27th, 2025]
- Why Quantum Computing Could Be the Biggest Breakthrough Since Fire - Inc.com - July 27th, 2025 [July 27th, 2025]
- The Real Reason Quantum Computing Stocks Are Soaring (It's Not What You Think) - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Is Quantum Computing Inc. the Next Nvidia? - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Why Some Investors Are Betting Big on Quantum Computing as a Moonshot Artificial Intelligence (AI) Play - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- University of Chicago and IBM Provide IBM Quantum System Two Access and Resources for Illinois Quantum Startups - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- 14 Stocks Jim Cramer Discussed As He Went All In On Quantum Computing - Insider Monkey - July 27th, 2025 [July 27th, 2025]
- Whos News: Leadership Updates at Q-CTRL, IonQ, University of Maryland, eleQtron, and JPMorgan Chase - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- Buy the Dip on This Quantum Computing Stock - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- UChicago partners with IBM to strengthen quantum computing startups in Illinois - University of Chicago News - July 24th, 2025 [July 24th, 2025]
- Gold clusters mimic atomic spin properties for scalable quantum computing applications - Phys.org - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2026-2046, with Profiles of 217 Companies Shaping the Quantum Computing Ecosystem, Including Market Leaders,... - July 24th, 2025 [July 24th, 2025]
- Quantum Computing Inc. (QUBT): A Bear Case Theory - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Universal Quantum Joins Open Quantum Institute to Advance Endometriosis Drug Discovery with Quantum Computing - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- Unpacking the Latest Options Trading Trends in Quantum Computing - Nasdaq - July 24th, 2025 [July 24th, 2025]
- Quantum Computing: Stay Far From The Quantum Realm, Strong Sell (NASDAQ:QUBT) - Seeking Alpha - July 24th, 2025 [July 24th, 2025]
- 2025: An eventful year for quantum computing - The New Indian Express - July 24th, 2025 [July 24th, 2025]
- Riverlane and OQC Move Toward Fault-Tolerant Quantum Computing with QEC Integration - HPCwire - July 24th, 2025 [July 24th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Unlocking the Future: How Advanced Ceramics Are Powering Quantum Computing and Semiconductor Innovation - openPR.com - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2025: Revenue, Trends, and Key Players - Yahoo Finance - July 22nd, 2025 [July 22nd, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Mitrade - July 22nd, 2025 [July 22nd, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 7/21/2025 - TipRanks - July 22nd, 2025 [July 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is quantum computing the next big thing in stocks? - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Are We in a Quantum Computing Bubble? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is Quantum Computing Stock a Buy for Less Than $20? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - AOL.com - July 20th, 2025 [July 20th, 2025]
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance | Newswise - Newswise - July 18th, 2025 [July 18th, 2025]
- Quantum Computing Seen As Top Cybersecurity Threat by 65% of Firms - IoT World Today - July 18th, 2025 [July 18th, 2025]
- SuperQ Quantum Computing Partners with Web Summit to Expand Global Reach - TipRanks - July 18th, 2025 [July 18th, 2025]
- They Put Light and Quantum Into One Chip!: Scientists Unveil Silicon Breakthrough That Could Reshape the Future of Computing Forever - Rude Baguette - July 16th, 2025 [July 16th, 2025]
- What is quantum computing? Heres everything you need to know right now - Fast Company - July 16th, 2025 [July 16th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - The Motley Fool - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Breakthrough: Rigetti Doubles Performance with Industry-First 36-Qubit Multi-Chip System - Stock Titan - July 16th, 2025 [July 16th, 2025]
- Why Is Sumitomo Corporation Taking on Quantum Computing? Pioneering Real-World Applications at the Forefront of Social Implementation -... - July 16th, 2025 [July 16th, 2025]
- Oxford Ionics and Iceberg Quantum Partner to Accelerate Fault-Tolerant Quantum Computing - HPCwire - July 16th, 2025 [July 16th, 2025]
- Analysts See over 30% Upside in These 3 Quantum Computing Stocks 7/14/2025 - TipRanks - July 16th, 2025 [July 16th, 2025]
- How Mass. is becoming a hub for the quantum computing industry - WBUR - July 16th, 2025 [July 16th, 2025]
- Ohio awards millions to Miami University for 'quantum computing workforce' - spectrumlocalnews.com - July 16th, 2025 [July 16th, 2025]
- Could IonQ Be the Nvidia of Quantum Computing? - 24/7 Wall St. - July 16th, 2025 [July 16th, 2025]
- Quantum (QUBT) Computing Rallies 8.7% Ahead of Q2 Earnings - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Wanted: enabling technologies in quantum computing for artificial intelligence (AI) and cyber security - Military Aerospace - July 16th, 2025 [July 16th, 2025]
- What's Going On With Quantum Computing Stock Today? - Quantum Computing (NASDAQ:QUBT) - Benzinga - July 16th, 2025 [July 16th, 2025]
- ZenaTech creates quantum computing prototype to advance AI drone solutions - Evertiq - July 16th, 2025 [July 16th, 2025]
- AmpliTechs Cryogenic LNAs Power the Future of Quantum Computing and AI - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Inc. Stocks: Time to Buy or Wait? - StocksToTrade - July 16th, 2025 [July 16th, 2025]
- Think Quantum Computing Will Be the Next Big Thing? These Are the 2 Stocks to Buy Today - 24/7 Wall St. - July 14th, 2025 [July 14th, 2025]
- Rigetti Computing (RGTI): At the Quantum Inflection Point A Leveraged Play on Institutional Adoption - AInvest - July 14th, 2025 [July 14th, 2025]
- NTT Research and Tohoku University Collaborate on Quantum Enhanced Coherent Ising Machines - Quantum Computing Report - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - MSN - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - The Motley Fool - July 12th, 2025 [July 12th, 2025]
- ZenaTech Creates First Quantum Computing Prototype Enabling Disruptive AI Drone Speed and Precision for Future Commercial and US Defense Applications... - July 12th, 2025 [July 12th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 35 years - Capgemini - July 12th, 2025 [July 12th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - Nasdaq - July 12th, 2025 [July 12th, 2025]
- Quantum Computing - Why BTC isn't the biggest worry for COINBASE:BTCUSD by Profit_Through_Patience - TradingView - July 10th, 2025 [July 10th, 2025]
- 3 Artificial Intelligence (AI) Stocks Could Lead the Quantum Computing Revolution - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- D-Wave, Yonsei, Incheon team up to boost quantum computing - Evertiq - July 10th, 2025 [July 10th, 2025]
- Is Rigetti Computing the Top Quantum Computing Stock for the Second Half of 2025? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- SuperQ Quantum Computing Inc. to Begin Trading on CSE as QBTQ - TipRanks - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - AOL.com - July 10th, 2025 [July 10th, 2025]
- This Quantum Computing Stock Just Raised $1 Billion And Analyst Says Its Only Getting Started - IonQ (NYSE:IONQ) - Benzinga - July 10th, 2025 [July 10th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 3-5 years - The Manila Times - July 10th, 2025 [July 10th, 2025]
- Quantum Computing (NASDAQ:QUBT) Shares Down 2.2% - Here's What Happened - MarketBeat - July 10th, 2025 [July 10th, 2025]