ANL Special Colloquium on The Future of Computing – HPCwire
There are, of course, a myriad of ideas regarding computings future. At yesterdays Argonne National Laboratorys Directors Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm not (just) economic cost; were talking entropy here is fundamentally undermining computings progress such that it will never be able to solve todays biggest challenges.
The broad idea is that the steady abstracting away of informational content from each piece of modern computings complicated assemblage (chips, architecture, programming) inexorably increases the cumulative energy cost, leading toward a hard ceiling. Leaving aside, for a moment, the decline in Moores law (just a symptom really), it is the separation (abstraction) of information from direct computation thats the culprit argues Shankar. Every added step adds energy cost.
Nature, on the other hand, bakes information into things. Consider, said Shankar, how a string of amino acids folds into its intended 3-D conformation on a tiny energy budget and in a very short time just by interacting with its environment, and contrast that with the amount of compute required i.e. energy expended to accurately predict protein folding from a sequence of amino acids. Shankar, research technology manager at the SLAC National Laboratory and adjunct Stanford professor, argues computing must take a lesson from nature and strive to pack information more tightly into applications and compute infrastructure.
Information theory is a rich field with a history of rich debate. Turning theory into practice has often proven more difficult and messy. Shankar (and his colleagues) have been developing a formal framework for classifying the levels of information content in human-made computation schemes and natural systems in a way that permits direct comparison between the two. The resulting scale has eight classification levels (0-7).
Theres a lot to digest in Shankars talk. Rather than going off the rails here with a garbled explanation its worth noting that Argonne has archived the video and Shankar has a far-along paper thats expected in a couple of months. No doubt some of his ideas will stir conversation. Given that Argonne will be home to Aurora, the exascale supercomputer now being built at the lab, it was an appropriate site for a talk on the future of computing.
Before jumping into what the future may hold, heres a quick summary of Shankars two driving points 1) Moores law, or more properly the architecture and semiconductor technology on which it rests, is limited and 2) the growing absolute energy cost of information processing using traditional methods (von Neumann) are limiting:
A big part of the answer to question of how computing must progress, suggested Shankar, is to take a page from Feynmans reverberating idea not just for quantum computing and emulate the way nature computes, pack[ing] all of the information needed for the computing into the things themselves or at least by reducing abstraction as much as possible.
Argonne assembled an expert panel to bat Shankars ideas around. The panel included moderator Rick Stevens (associate laboratory director and Argonne distinguished fellow), Salman Habib (director, Argonne computational science division and Argonne distinguished fellow), Yanjing Li (assistant professor, department of computer science, University of Chicago), and Fangfang Xia (computer scientist, data science and learning division, ANL).
Few quibbled with the high-energy cost of computing as described by Shankar but they had a variety of perspectives on moving forward. One of the more intriguing comments came from Xia, an expert in neuromorphic computing. He suggested using neuromorphic systems to discover new algorithms is a potentially productive approach.
My answer goes back to the earlier point Sadas and Rick made which is, if were throwing away efficiency in the information power conversion process, why dont we stay with biological system for a bit longer. Theres this interesting field called synthetic biological intelligence. They are trying to do these brain-computer interfaces, not in a Neurolink way, because thats still shrouded in uncertainty. But there is a company and they grow these brain cells in a petri dish. Then they connect this to an Atari Pong game. And you can see that after just 10 minutes, these brain cells self-organize into neural networks, and they can learn to play the game, said Xia.
Keep in mind, this is 10 minutes in real life, its not a simulation time. Its only dozens of games, just like how we pick up games. So this data efficiency is enormous. What I find particularly fascinating about this is that in this experiment there was no optimization goal. There is no loss function you have to tweak. The system, when connected in this closed loop fashion, will just learn in an embodied way. That opens so many possibilities, you think about all these dishes, just consuming glucose, you can have them to learn latent representations, maybe to be used in digital models.
Li, a computer architecture expert, noted that general purpose computing infrastructure has existed for a long time.
I remember this is the same architecture of processor design I learned at school, and I still teach the same materials today. For the most part, when were trying to understand how CPUs work, and even some of the GPUs, those have been around for a long time. I dont think there has been a lot of very revolutionary kind of changes for those architectures. Theres a reason for that, because we have developed, good tool chains, the compiler tool change people are educated to understand and program and build those systems. So anytime we want to make a big change [it has] to be competitive and as usable as what we know of today, Li said.
On balance, she expects more incremental changes. I think its not going to be just a big jump and well get there tomorrow. We have to build on small steps looking at building on existing understanding and also evolving along with the application requirements. I do think that there will be places where we can increase energy efficiency. If were looking at the memory hierarchy, for example, we know caches and that it helps us with performance. But its also super inefficient from an energy performance standpoint. But this has worked for a long time, because traditional applications have good locality, but we are increasingly seeing new applications where [there] may not be as many localities so theres a way for innovation in the memory hierarchy path. For example, we can design different memory, kind of reference patterns and infrastructures or applications that do not activate locality, for example. That will be one way of making the whole computing system much more efficient.
Li noted the trend toward specialized computing was another promising approach: If we use a general-purpose computing system like a CPU, theres overhead that goes into fetching the instructions, decoding them. All of those are overheads are not directly solving the problem, but its just what you need to get the generality you need to solve all problems. Increasing specialization towards offloading different specialized tasks would be another kind of interesting perspective of approaching this problem.
There was an interesting exchange between Shankar and Stevens over the large amount of energy consumed in training todays large natural language processing models.
Shankar said, Im quoting from literature on deep neural networks or any of these image recognition networks. They scale quadratically with the number of data points. One of the latest things that is being hyped about in the last few weeks is a trillion parameter, natural language processing [model]. So here are the numbers. To train one of those models, it takes the energy equivalent to four cars being driven a whole year, just to train the model, including the manufacturing cost of the car. That is how much energy is spent in the training on this, so there is a real problem, right?
Not so fast countered Stevens. Consider using the same numbers for how much energy is going into Bitcoin, right? So the estimate is maybe something like 5 percent of global energy production. At least these neural network models are useful. Theyre not just used for natural language processing. You can use it for distilling knowledge. You can use them for imaging and so forth. I want to shift gears a little bit. Governments around the world and VCs are putting a lot of money into quantum computing, and based on what you were talking about, its not clear to me that thats actually the right thing we should be doing. We have lots of opportunities for alternative computing models, alternative architectures that could open up spaces that we know in principle can work. We have classical systems that can do this, he said.
Today, theres an army of computational scientists around the world seeking ways to advance computing, some of them focused on the energy aspect of the problem, others focused on other areas such on performance or capacity. It will be interesting to see if the framework and methodology embodied on Shankars forthcoming paper not only provokes discussion but also provides a concrete methodology for comparing computing system efficiency.
Link to ANL video: https://vimeo.com/event/2081535/17d0367863
Brief Shankar Bio
Sadasivan (Sadas) Shankar is Research Technology Manager at SLAC National Laboratory and Adjunct Professor in Stanford Materials Science and Engineering. He is also an Associate in the Department of Physics in Harvard Faculty of Arts and Sciences, and was the first Margaret and Will Hearst Visiting Lecturer in Harvard University and the first Distinguished Scientist in Residence at the Harvard Institute of Applied Computational Sciences. He has co-instructed classes related to materials, computing, and sustainability and was awarded Harvard University Teaching Excellence Award. He is involved in research in materials, chemistry, and specialized AI methods for complex problems in physical and natural sciences, and new frameworks for studying computing. He is a co-founder and the Chief Scientist in Material Alchemy, a last mile translational and independent venture for sustainable design of materials.
Dr. Shankar was a Senior Fellow in UCLA-IPAM during a program on Machine Learning and Many-body Physics, invited speaker in The Camille and Henry Dreyfus Foundation on application of Machine Learning for chemistry and materials, Carnegie Science Foundation panelist for Brain and Computing, National Academies speaker on Revolutions in Manufacturing through Mathematics, invited to White House event for Materials Genome, Visiting Lecturer in Kavli Institute of Theoretical Physics in UC-SB, and the first Intel Distinguished Lecturer in Caltech and MIT. He has given several colloquia and lectures in universities all over the world. Dr. Shankar also worked in the semiconductor industry in the areas of materials, reliability, processing, manufacturing, and is a co-inventor in over twenty patent filings. His work was also featured in the journal Science and as a TED talk.
Go here to read the rest:
ANL Special Colloquium on The Future of Computing - HPCwire
- The Ultimate Quantum Computing Stock Is Hiding in Plain Sight - Yahoo Finance - November 16th, 2025 [November 16th, 2025]
- This is the Only Quantum Computing Stock You Should Buy - Yahoo Finance - November 16th, 2025 [November 16th, 2025]
- Prediction: Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Will Plunge 50% (or More) in 2026 - Yahoo Finance - November 16th, 2025 [November 16th, 2025]
- Quantum computing is getting realand Britain wants to lead - The Economist - November 16th, 2025 [November 16th, 2025]
- Quantum Computing News: Microsoft Expands in Europe as IBM and IonQ Boost Global Quantum Investments - TipRanks - November 16th, 2025 [November 16th, 2025]
- Quantum Computing Inc (QUBT) Q3 2025 Earnings Call Highlights: Record Revenue and Strategic ... - Yahoo Finance - November 16th, 2025 [November 16th, 2025]
- IBM sees a big milestone ahead for quantum computing and it hinges on these new chips - MarketWatch - November 16th, 2025 [November 16th, 2025]
- AI, Big Data, and Quantum Computing: Which Will Lead 2026 Investments - River Journal Online - November 16th, 2025 [November 16th, 2025]
- This is the Only Quantum Computing Stock You Should Buy - 24/7 Wall St. - November 16th, 2025 [November 16th, 2025]
- 1 Standout Quantum Computing ETF That's High on My Watch List Right Now - The Globe and Mail - November 16th, 2025 [November 16th, 2025]
- Prediction: Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Will Plunge 50% (or More) in 2026 - The Motley Fool - November 16th, 2025 [November 16th, 2025]
- As IBM Rallies on a Quantum Computing Breakthrough, Heres Where the Stock Could Be Headed Next - Yahoo Finance - November 16th, 2025 [November 16th, 2025]
- Classiq Secures Strategic Funding from AMD, Qualcomm Ventures, and IonQ - Quantum Computing Report - November 16th, 2025 [November 16th, 2025]
- This is the Only Quantum Computing Stock You Should Buy - MSN - November 16th, 2025 [November 16th, 2025]
- IBM says 'Loon' chip shows path to useful quantum computers by 2029 - Reuters - November 14th, 2025 [November 14th, 2025]
- Prediction: Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Will Plunge 50% (or More) in 2026 - Nasdaq - November 14th, 2025 [November 14th, 2025]
- Why quantum computing teams at JPMorgan and other banks are being outshined by AI - eFinancialCareers - November 14th, 2025 [November 14th, 2025]
- Quantum computing pure plays duel with giants, rivals - Constellation Research - November 14th, 2025 [November 14th, 2025]
- Quantum Computing Inc (QUBT) Q3 2025 Earnings Report Preview: What to Expect - Yahoo Finance - November 14th, 2025 [November 14th, 2025]
- Quantum Computing Pure-Play Stocks IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Just Issued a $749 Million Warning to Wall... - November 14th, 2025 [November 14th, 2025]
- Quantum computing stocks are surging but short-seller Andrew Left is still betting against them - Business Insider - November 14th, 2025 [November 14th, 2025]
- This Blue Chip Company Just Announced Quantum Computing 'Breakthroughs.' Its Stock Hit a New High - Investopedia - November 14th, 2025 [November 14th, 2025]
- IBM Just Announced a Massive Jump In Quantum Computing. These Industries Will Benefit Most - Inc.com - November 14th, 2025 [November 14th, 2025]
- What security teams should do to prepare for the quantum computing future - CyberScoop - November 14th, 2025 [November 14th, 2025]
- Commit To Buy Quantum Computing At $5, Earn 30% Using Options - Nasdaq - November 14th, 2025 [November 14th, 2025]
- Is Quantum Computing Stock IonQ Headed to $60? History Offers a Clear Warning About What Could Happen Next - The Motley Fool - November 14th, 2025 [November 14th, 2025]
- Exploring the Impact of Quantum Computing on Financial Risk Management - CIO Applications - November 14th, 2025 [November 14th, 2025]
- IBM Pushes Ahead in the Quantum Computing Race - The Motley Fool - November 14th, 2025 [November 14th, 2025]
- Breaking Quantum Computing Stock News That IonQ, Rigetti Computing, and D-Wave Investors Can't Afford to Miss - The Motley Fool - November 14th, 2025 [November 14th, 2025]
- POET, Quantum Computing team up on 3.2 Tbps optical engines for next-gen AI networks (POET:NASDAQ) - Seeking Alpha - November 11th, 2025 [November 11th, 2025]
- POET Technologies and Quantum Computing Inc. to Co-Develop 3.2 Tbps Optical Engines for CPO and Next-Gen AI Connectivity - PR Newswire - November 11th, 2025 [November 11th, 2025]
- Breaking Quantum Computing Stock News That IonQ, Rigetti Computing, and D-Wave Investors Can't Afford to Miss - Yahoo Finance - November 11th, 2025 [November 11th, 2025]
- Rigetti EPS Preview: Betting on the Future of Quantum Computing - Nasdaq - November 11th, 2025 [November 11th, 2025]
- This Super Micro Computer Rival Is Betting Big on Quantum Computing. Should You Buy Its Stock Now? - Yahoo Finance - November 11th, 2025 [November 11th, 2025]
- Nvidia's Quiet Move Into Quantum Computing Could Reshape the Next Frontier of AI - The Motley Fool - November 11th, 2025 [November 11th, 2025]
- SkyWater Technology (SKYT): Assessing Valuation After Earnings Beat and Quantum Computing Partnership - Yahoo Finance - November 11th, 2025 [November 11th, 2025]
- Quantum Computing (NASDAQ:QUBT) Shares Down 6% - Here's What Happened - MarketBeat - November 11th, 2025 [November 11th, 2025]
- IonQ's Operating Results Highlight a Grim Reality for Quantum Computing Stocks Rigetti Computing and D-Wave Quantum - Yahoo Finance - November 11th, 2025 [November 11th, 2025]
- IBM, IBD Stock Of The Day, Near Buy Point Amid AI Software, Quantum Computing Push - Investor's Business Daily - November 11th, 2025 [November 11th, 2025]
- Amazon Just Ditched Its Stake in IonQ Stock. Should You Bail on the Quantum Computing Leader Too? - Barchart.com - November 11th, 2025 [November 11th, 2025]
- Quantum Computing Q3 Earnings Preview: What To Expect From Upcoming Report - GuruFocus - November 11th, 2025 [November 11th, 2025]
- IonQ's Operating Results Highlight a Grim Reality for Quantum Computing Stocks Rigetti Computing and D-Wave Quantum - The Motley Fool - November 11th, 2025 [November 11th, 2025]
- Rigetti EPS Preview: Betting on the Future of Quantum Computing - Yahoo Finance - November 11th, 2025 [November 11th, 2025]
- IonQ and University of Chicago Partner to Deploy Production-Grade Quantum Computer and Entanglement Network - Quantum Computing Report - November 11th, 2025 [November 11th, 2025]
- Equal1 to Cooperate on Hybrid Quantum Computing System With The European Space Agency - The Quantum Insider - November 11th, 2025 [November 11th, 2025]
- BTC News: How To Avoid The Quantum Computing Threat With Your Bitcoin, According To Analyst - Live Bitcoin News - November 11th, 2025 [November 11th, 2025]
- IonQ Is Advancing Its DARPA Collaboration. Should You Buy the Quantum Computing Stock Here? - Barchart.com - November 11th, 2025 [November 11th, 2025]
- POET Technologies And Quantum Computing Team Up To Boost AI Data Speeds - Stocktwits - November 11th, 2025 [November 11th, 2025]
- Does IonQ's $3.5 Billion Cash Hoard Make It the Most Dominant Force in Quantum Computing? - The Motley Fool - November 11th, 2025 [November 11th, 2025]
- POET Technologies and Quantum Computing to Co-Develop 3.2Tbps Optical Engines - TradingView - November 11th, 2025 [November 11th, 2025]
- Quantum Computing Modules Enhance Statistical Physics Education with Simulations of Random Walks and the Ising Model - Quantum Zeitgeist - November 11th, 2025 [November 11th, 2025]
- POET Technologies (POET) Partners with Quantum Computing for Adv - GuruFocus - November 11th, 2025 [November 11th, 2025]
- You Won't Believe What Elon Musk Just Said About Quantum Computing (Spoiler Alert: It's Good News) - Yahoo Finance - November 3rd, 2025 [November 3rd, 2025]
- Prediction: This Stock Will Be the Ultimate Quantum Computing Winner - Yahoo Finance - November 3rd, 2025 [November 3rd, 2025]
- 3 Top Quantum Computing Stocks to Buy in 2025 - Yahoo Finance - November 3rd, 2025 [November 3rd, 2025]
- History wont forgive us if UK falls behind in quantum computing race, says Tony Blair - The Guardian - November 3rd, 2025 [November 3rd, 2025]
- Quantum Computing Inc. to Host Third Quarter 2025 Shareholder Call on Friday, November 14, 2025 - Yahoo Finance - November 3rd, 2025 [November 3rd, 2025]
- 2 Popular Quantum Computing Stocks to Sell Before They Fall 41% and 54%, According to Select Wall Street Analysts - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- 2 Popular Quantum Computing Stocks to Sell Before They Fall 41% and 54%, According to Select Wall Street Analysts - Yahoo Finance - November 3rd, 2025 [November 3rd, 2025]
- Prediction: This Stock Will Be the Ultimate Quantum Computing Winner - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- An Epic Reversal Is Coming for Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum, Based on a Time-Tested Indicator - Nasdaq - November 3rd, 2025 [November 3rd, 2025]
- You Won't Believe What Elon Musk Just Said About Quantum Computing (Spoiler Alert: It's Good News) - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- NISQ to FASQ Quantum Computing Still Faces a Climb From Promise to Practicality - The Quantum Insider - November 3rd, 2025 [November 3rd, 2025]
- Quantum computing on the verge: correcting errors, developing algorithms and building up the user base - Physics World - November 3rd, 2025 [November 3rd, 2025]
- 3 Top Quantum Computing Stocks to Buy in 2025 - sharewise.com - November 3rd, 2025 [November 3rd, 2025]
- Prediction: This Stock Will Be the Ultimate Quantum Computing Winner - Nasdaq - November 3rd, 2025 [November 3rd, 2025]
- Quantum Computing Stocks D-Wave, IonQ, and Rigetti Talk With Trump Administration About Equity Stakes. Is It Time to Buy? - Yahoo Finance - October 28th, 2025 [October 28th, 2025]
- FinovateEurope 2026: AI, Cybersecurity, Stablecoins, Quantum Computing and More! - Finovate - October 28th, 2025 [October 28th, 2025]
- Quantum Computing Stocks Soar on Government Stake Talks. Why IonQ Is a Buy. - Yahoo Finance - October 28th, 2025 [October 28th, 2025]
- Rigetti Computing (RGTI): Assessing Valuation Following a Strong Year for Quantum Tech Shares - simplywall.st - October 28th, 2025 [October 28th, 2025]
- How quantum computing could become the next frontier in national security - oodaloop.com - October 28th, 2025 [October 28th, 2025]
- Quantum Computing Stocks D-Wave, IonQ, and Rigetti Talk With Trump Administration About Equity Stakes. Is It Time to Buy? - Nasdaq - October 28th, 2025 [October 28th, 2025]
- How quantum computing could become the next frontier in national security - MarketWatch - October 26th, 2025 [October 26th, 2025]
- IonQ, Rigetti, Other Quantum-Computing Stocks Jump on U.S. Stake Interest - The Wall Street Journal - October 26th, 2025 [October 26th, 2025]
- 3 Quantum Computing Stocks That Could Be Once-in-a-Lifetime Investment Opportunities - The Motley Fool - October 26th, 2025 [October 26th, 2025]
- This Quantum Computing Stock Is Up 3,000% Over the Last Year, and the CEO Just Cashed Out. Are Retail Investors Fueling a Bubble? - Yahoo Finance - October 26th, 2025 [October 26th, 2025]
- This Quantum Computing Stock Is Up 3,000% Over the Last Year, and the CEO Just Cashed Out. Are Retail Investors Fueling a Bubble? - The Motley Fool - October 26th, 2025 [October 26th, 2025]
- Billionaires Bill Ackman, Izzy Englander, and David Tepper Own These 2 Quantum Computing Stocks. Should You? - The Motley Fool - October 26th, 2025 [October 26th, 2025]
- Google Unveils Quantum Computing Breakthrough on Willow Chip - Yahoo Finance - October 26th, 2025 [October 26th, 2025]
- Trump Wants in on Quantum Computing. Will RGTI, QBTS, IONQ, or QUBT Win? - Yahoo Finance - October 26th, 2025 [October 26th, 2025]