Are You Prepared for the Quantum Revolution? – Built In
Quantum computing is poised to fundamentally transform the digital world as we know it.
Quantum information science (QIS) is an emerging field that combines the properties of quantum mechanics with computing, sensing and networking technologies. As such, its poised to drive revolutionary advances across a vast array of essential areas from national security to energy research to the development of new materials and personalized medicines. At its core, quantum computing exploits the phenomena of quantum mechanics to analyze, interpret, and employ enormous amounts of data to solve complex problems.
Quantum computing will likely be key to the technological future of businesses everywhere. This promise of quantum technologies has spawned many evangelists, even as large-scale adoption of quantum systems remains stubbornly distant on the horizon. If you hope to turn this promise into reality and become a quantum leader, it is essential that your organization aligns its resources, priorities, talent, energy and vision.
In the Chicagoland region, this process is well underway. A partnership of quantum innovators has emerged led by the Chicago Quantum Exchange drawing on the expertise and vision of world-class universities, exceptional government laboratories and visionary industry leaders to advance research and development of quantum technologies.
The time to prepare for the coming quantum revolution is now. Heres everything you need to know about QIS from which industries are likely to be disrupted to the known challenges facing the technology.
Quantum technology takes advantage of atomic particles and how they relate to one another to process information at computational rates that are faster in theory exponentially faster than conventional, transistor-based computers.Rather than simply adding computational resources, quantum systems and quantum algorithms approach complex problems and large, diverse data sets by operating in multidimensional spaces. By exploiting the effects of superposition, entanglement and interference, quantum computing can identify patterns linking disparate data points.
With a suitable class of quantum machines you could imitate any quantum system, including the physical world.
Richard Feynman, Nobel Prize-winning American theoretical physicist and pioneer in the QIS field
The pioneers of computing technologies could only imagine what modern computing technology could achieve. But even as the computational capabilities of classical (e.g. binary or digital) computing continues to progress, a variety of problems remain beyond its reach. As Dr. Feynman alluded, a classical computer lacks the capacity to imitate quantum systems.
Just as the scientific world was turned on its head when the classical understanding of physical systems was upended by early quantum theorists, the constraints of classical computing are being challenged by the promise of quantum computing.
As with any scientific breakthrough and quantum computing promises nothing short of a revolution the technology supporting and explaining quantum computing is neither easy to describe nor grasp. However, its applications and significance are hard to ignore. The quantum revolution will provide better, faster and more meaningful results in comparison to the best current (and even future) conventional computers.
Quantum technology exploits characteristics of atomic particles and how they relate to one another to process information at computational rates that are in theory exponentially faster than conventional, transistor-based computers. For a variety of related reasons, quantum communications are also more secure than conventional cryptographic methods.
The power and promise of quantum computers stems from the logical operator, the quantum bit, or qubit. Although a qubit can represent digital states (e.g. a 0 or a 1, similar to a bit of a conventional computer), a qubit can also represent both states simultaneously in a state called superposition, which is a unique phenomenon fundamental to quantum mechanics.
Exploiting the effects of superposition could yield processing power that has the potential to solve problems that are today intractable, impractical or unthinkable. The quantum revolution may usher in a new era of discovery beyond the strictures of todays thinking.
There are any number and variety of technical and business areas that stand to benefit from quantum computing advancement. On the road to wider adoption, early innovators are laboring over quantum systems that would be familiar to their classical computing forebears:
In some instances, major innovations are needed to make quantum computing a reality (e.g. hardware to mimic quantum mechanics and algorithms designed for application on quantum hardware). Some provide proof of concept like internet connections employing quantum-based communications while others employ principles of quantum mechanics to improve upon existing technologies such as timing, imaging and sensing devices.
That doesnt mean the path ahead is clear. Harnessing the power of quantum mechanics is a complex and delicate task, and challenges remain.
The long and costly journey from theory to practice for quantum technologies begs the question: What are the risks and benefits of quantum computing that justify the substantial resources required?
One answer is that cracking classical data and communications encryption may become boringly easy for a quantum computer. If all data communications were readable by anyone with a quantum computer, no sensitive information would be secure. Similarly, the simulation of complex systems including material science and drug discovery are tasks that theoretically would realize gains from the power of quantum computing.
Thus, early adoption of quantum computing is expected in a number of industries, including:
Realizing the potential of quantum computing requires new hardware and software specifically designed for this purpose.
For example, early and widely adopted quantum machines employ superconducting materials, which are proven to facilitate the physical effects, such as superposition and entanglement, that provide the benefits of quantum computing. However, superconducting circuits require extremely cold temperatures to operate, which often means large, expensive and immobile cooling systems.
Here are three other roadblocks that remain barriers to wider adoption:
Increasing the number of qubits in a quantum machine
Qubit stability (the ability to maintain a controlled quantum state)
Decoherence (the loss of alignment between two or more qubits)
A number of efforts are underway to make superconducting qubits more robust. Algorithms designed for quantum computers are enjoying a comparatively faster pace of evolution. Arguably, quantum-based algorithms require the hardware on which to perform before their full potential is realized. These specific hardware platforms may impact which algorithms are viable, but coding protocols and tools are being developed to ensure quantum computers are equipped for solving problems when the hardware is ready to support them.
With technological advancements often come business and legal challenges. Some areas that could benefit the most from quantum computing are subject to significant regulatory scrutiny, such as the financial sector and drug discovery.
The debate regarding the use of artificial intelligence in finance and security shows there are some potential hurdles to widespread quantum adoption.
It is also possible that, as the competition for talent, capital and renown intensifies, people may be less willing to share information. This may lead to fewer publications sharing relevant information and increased legal barriers that may slow the rate of innovation in the quantum space. Moreover, there may be national security concerns regarding the research into cryptography and communications, which may encourage further governmental regulation.
Undoubtedly, however, the outcomes of this great effort will be of substantial value for businesses, governments and individuals. The value of much of quantum computing may take years to realize, and it may not fit neatly into current legal protection schemes. For example, is a quantum algorithm patentable? If so, how do you detect infringement? Due to the pace of innovation, might some advancement be best kept as a trade secret? The rules are being decided in real time.
There are many companies, research centers and government initiatives focused on quantum technologies.
For example, the Defense Advanced Research Projects Agency a research and development agency inside the U.S. Department of Defense responsible for the development of emerging technologies for use by the military is currently developing a series of benchmarks for metrics and standards for quantum computing. Developers are also creating platform-agnostic software tools to quickly create and modify quantum algorithms.
Long-term, there is a possibility that quantum computers will operate in tandem with classical, digital machines. If this remains the prevailing expectation, there may not be a desktop quantum computer in the making, but rather an industry of quantum-enabled hybrid computers that are accessible via cloud computing or at specific quantum-computing centers.
This may enable quantum innovators to more quickly develop a core quantum machine, which could delegate less complex tasks to a complementary digital system.
The capabilities of this incredible, weird technology have so captivated scientists, business and government leaders that a kind of quantum arms race is underway. And Chicagoland has positioned itself as a quantum center of excellence.
Anchored by the U.S. Department of Energys Argonne National Laboratory and Fermi National Accelerator Laboratory, the greater Chicago area has attracted talent and resources to support quantum research. The University of Chicago, which manages both Argonne and Fermilab, is home to the Chicago Quantum Exchange (CQE), which is committed to commercialization of basic and advanced quantum research. Its members include the University of Chicago, the University of Illinois at Urbana-Champaign, the University of Wisconsin-Madison and Northwestern University among other scientific and community partners. This network provides an unparalleled brain trust and provides the region with a significant critical mass of expertise, influence and potential.
The depth of the regions quantum expertise is bolstered by a strong commitment from both state and national governments. In recent years, the U.S. federal government has passed several significant initiatives to advance quantum research and development. In 2018 the National Quantum Initiative (NQI) was signed into law to provide for a coordinated federal program to accelerate quantum research and development for the economic and national security of America. In 2021, the United States Innovation and Competition Act (USICA) became law, providing billions of dollars in support for a number of research initiatives, including quantum computing.
With access to world-class research institutions and two of the DoEs most celebrated national laboratories, Chicago is uniquely situated to take advantage of this support. As an example, the NQI established five research centers, two of which are located in the Chicagoland region. The Argonne National Laboratory maintains a 52-mile quantum loop internet connection, and it also operates Q-NEXT, a next-generation science and engineering center. And Fermilab is home to the Superconducting Quantum Materials and Systems Center, which is tackling some of the thorniest problems in quantum computing.
The resources and talent flooding into the Chicagoland region may result in more than advancing quantum adoption. Attracting talent, capital and developments in material science will lead to the creation of an entire new industry focused on using quantum technology to solve some of the greatest challenges of our time.
Quantum supremacy where a quantum computer is able to solve a devilishly hard problem thats out of reach of classical systems has been ceremoniously heralded more than once, only to result in muted expectations.
But it is crucial to continue to support quantum advancement despite these setbacks. While these efforts wont bear fruit overnight, it is clear that when quantum becomes accessible and reliable, many areas of technology and business will reap the rewards
Beyond the technological challenges, the legal and regulatory landscape will have to quickly adapt to fully address these new and exciting technologies. The rewards may be great for those who take early steps to seize upon the promise of quantum computing.
Go here to see the original:
Are You Prepared for the Quantum Revolution? - Built In
- D-Wave Stock Slips. Why Nvidias Quantum Computing Event Hurt the Shares. - Barron's - March 22nd, 2025 [March 22nd, 2025]
- Nvidia Is Going Big on Quantum Computing, and It Isnt Going It Alone - Barron's - March 22nd, 2025 [March 22nd, 2025]
- 6 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - March 22nd, 2025 [March 22nd, 2025]
- Recommended Reading Evaluating the Performance of Quantum Process Units at Large Width and Depth - Quantum Computing Report - March 22nd, 2025 [March 22nd, 2025]
- When will quantum computing be available? It depends - TechTarget - March 22nd, 2025 [March 22nd, 2025]
- Quantum-computing stocks fall again as Jensen Huang and other CEOs temper expectations around the bleeding-edge tech: Not good enough yet for... - March 22nd, 2025 [March 22nd, 2025]
- Is quantum computing the future of tech and where to find investment opportunities By Investing.com - Investing.com - March 22nd, 2025 [March 22nd, 2025]
- Jensen Huang backpedals on remarks that sent quantum computing stocks spiraling - TechSpot - March 22nd, 2025 [March 22nd, 2025]
- D-Wave Introduces Quantum Blockchain Architecture, Featuring Enhanced Security and Efficiency over Classical Computing - Business Wire - March 22nd, 2025 [March 22nd, 2025]
- Nvidia CEO Jensen Huang says he was wrong about quantum computing. But he might be right - Quartz - March 22nd, 2025 [March 22nd, 2025]
- Nvidia will build accelerated quantum computing research center - VentureBeat - March 22nd, 2025 [March 22nd, 2025]
- Quantum Computing Stocks Jump Ahead Of Nvidia GTC Conference Next Week - Investor's Business Daily - March 18th, 2025 [March 18th, 2025]
- 5 wild things quantum computing could unlock now that Big Tech believes a breakthrough is within reach - Business Insider - March 18th, 2025 [March 18th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - March 18th, 2025 [March 18th, 2025]
- How Quantum Computing And The Metaverse Will Transform Your Career - Forbes - March 18th, 2025 [March 18th, 2025]
- QUBT INVESTOR ALERT: Bronstein, Gewirtz and Grossman, LLC Announces that Quantum Computing Inc. Shareholders Have Opportunity to Lead Class Action... - March 18th, 2025 [March 18th, 2025]
- Cloudflare is already selling security tools for the quantum computing era - Quartz - March 18th, 2025 [March 18th, 2025]
- Norma and Neowiz Partner to Explore Quantum Computing and AI for Game Development - The Quantum Insider - March 18th, 2025 [March 18th, 2025]
- China to spend $55 billion on R&D in 2025 Semiconductor, AI and quantum computing fields to benefit - Tom's Hardware - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum leads massive rally in quantum computing stocks as its revenue outlook goes parabolic - Sherwood News - March 18th, 2025 [March 18th, 2025]
- Arqit leads quantum computing stocks higher ahead of Nvidia's GTC event - Seeking Alpha - March 18th, 2025 [March 18th, 2025]
- Quantum Computing (QUBT) to Release Earnings on Thursday - MarketBeat - March 18th, 2025 [March 18th, 2025]
- Nvidia's Jensen Huang to unveil cutting-edge AI and quantum computing processors - Firstpost - March 18th, 2025 [March 18th, 2025]
- Quantum Computing Just Took Another Giant Leap--What It Means for Investors - PR Newswire - March 18th, 2025 [March 18th, 2025]
- 4 Quantum Computing Stocks On Watch Today As GTC 2025 Kicks Off - Barchart - March 18th, 2025 [March 18th, 2025]
- The Gross Law Firm Reminds Quantum Computing Inc. Investors of the Pending Class Action Lawsuit with a Lead Plaintiff Deadline of April 28, 2025 -... - March 18th, 2025 [March 18th, 2025]
- Quantum Computing Market Size to Grow Worth USD 888.5 Million at - openPR - March 18th, 2025 [March 18th, 2025]
- China to spend $55 billion on R&D in 2025 Semiconductor, AI and quantum computing fields to benefit - MSN - March 18th, 2025 [March 18th, 2025]
- Nvidia GTC And Quantum Computing Drivers Of The Stock Market, Trump Put Fails But May Not Be Dead - Benzinga - March 18th, 2025 [March 18th, 2025]
- Google, Microsoft, and others are racing to crack open quantum computing. Here's how their breakthroughs stack up. - Business Insider - March 9th, 2025 [March 9th, 2025]
- Could Investing in This Quantum Computing Stock Be Like Buying Nvidia Prior to the Dawn of the Artificial Intelligence (AI) Revolution? - Yahoo... - March 9th, 2025 [March 9th, 2025]
- Inside The Quantum Computing Crash Triggered By Nvidia CEO And What His Upcoming 'Quantum Day' May Bring - Investor's Business Daily - March 9th, 2025 [March 9th, 2025]
- Rigetti Earnings Reveal the Risks and Rewards of Quantum Computing - Barron's - March 9th, 2025 [March 9th, 2025]
- 'Nanodot' control could fine-tune light for sharper displays and quantum computing - Phys.org - March 9th, 2025 [March 9th, 2025]
- 3 Quantum Computing Stocks to Buy on the Dip - 24/7 Wall St. - March 9th, 2025 [March 9th, 2025]
- How quantum computing is shaping the future of tech - Yahoo Finance - March 9th, 2025 [March 9th, 2025]
- AIST Strengthens Quantum Collaboration with ORCA Computing and Universal Quantum - Quantum Computing Report - March 9th, 2025 [March 9th, 2025]
- Microsofts Quantum Computing Breakthrough, Explained - The Dispatch - March 5th, 2025 [March 5th, 2025]
- Quantum Computing Startup Says Its Already Making Millions of Light-Powered Chips - Singularity Hub - March 5th, 2025 [March 5th, 2025]
- Quantum computing is creating the future heres how - USC Dornsife College of Letters, Arts and Sciences - March 5th, 2025 [March 5th, 2025]
- Why We Dont Have Real Quantum Computing Yet - Forbes - March 5th, 2025 [March 5th, 2025]
- QunaSys Joins 19.95M ($20.91M USD) EU Project to Advance Sustainable Battery Innovation with Quantum Computing - Quantum Computing Report - March 5th, 2025 [March 5th, 2025]
- Alice & Bob to Host Fault-Tolerant Quantum Computing Workshop with CEA - HPCwire - March 5th, 2025 [March 5th, 2025]
- Rigetti partners with Quanta to boost superconducting quantum computing development - DatacenterDynamics - March 5th, 2025 [March 5th, 2025]
- Quantum Computing Inc. Class Action Alert: Wolf Haldenstein Adler Freeman & Herz LLP reminds investors that a securities class action lawsuit has... - March 5th, 2025 [March 5th, 2025]
- Quantum computing startup says its already making millions of light-powered chips - StartupNews.fyi - March 5th, 2025 [March 5th, 2025]
- A quantum computing startup says it is already making millions of light-powered chips - Phys.org - March 3rd, 2025 [March 3rd, 2025]
- Superconducting Quantum Computing Beyond 100 Qubits - Physics - March 3rd, 2025 [March 3rd, 2025]
- How IBM CEO Arvind Krishna Is Thinking About AI and Quantum Computing - TIME - March 3rd, 2025 [March 3rd, 2025]
- Webinar | 27 March 2025 | Quantum computing: The future of finance are you ready for Q-Day? - FinTech Futures - March 3rd, 2025 [March 3rd, 2025]
- 3 Quantum Computing Stocks To Buy As Microsoft Announces Major Breakthrough - Barchart - March 3rd, 2025 [March 3rd, 2025]
- WT 360: Inside the governments quantum computing push - Washington Technology - March 3rd, 2025 [March 3rd, 2025]
- INVESTOR ALERT: Pomerantz Law Firm Announces the Filing of a Class Action Against Quantum Computing Inc. and Certain Officers - QUBT - PR Newswire - March 3rd, 2025 [March 3rd, 2025]
- Amazon unveils Ocelot, its first quantum computing chip - The Guardian - March 3rd, 2025 [March 3rd, 2025]
- Industry Weighs in on AWS Quantum Computing Chip - IoT World Today - March 3rd, 2025 [March 3rd, 2025]
- Startup PsiQuantum says it is making millions of quantum computing chips - Yahoo - March 1st, 2025 [March 1st, 2025]
- IonQs Earnings Hit the Stock. Quantum Computing Rivals D-Wave and Rigetti Are Down Too. - Barron's - March 1st, 2025 [March 1st, 2025]
- Interested in Quantum Computing Investing? Here Are 4 Fantastic Picks to Maximize Your Odds of Picking a Winner - Nasdaq - March 1st, 2025 [March 1st, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- 3 Reasons Why Microsoft Is the New King of Quantum Computing With Majorana 1 - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- QUBT INVESTOR ALERT: Bronstein, Gewirtz & Grossman LLC Announces that Quantum Computing Inc. Investors with Substantial Losses Have Opportunity to... - March 1st, 2025 [March 1st, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading 0.4% Higher - Here's What Happened - MarketBeat - March 1st, 2025 [March 1st, 2025]
- Why Quantum Computing Stock IonQ Dropped Today - The Motley Fool - March 1st, 2025 [March 1st, 2025]
- Prediction: These 2 Quantum Computing Stocks Will Be the Biggest AI Winners of 2025 - Yahoo Finance - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - The Motley Fool - February 20th, 2025 [February 20th, 2025]
- Quantum Watch: 3 Quantum Computing Startups Set to Disrupt the Industry - TipRanks - February 20th, 2025 [February 20th, 2025]
- D-Wave, IonQ and Quantum Computing Stocks Pop: What's Driving the Momentum? - Benzinga - February 20th, 2025 [February 20th, 2025]
- Microsoft quantum breakthrough promises to usher in the next era of computing in 'years, not decades' - GeekWire - February 20th, 2025 [February 20th, 2025]
- Microsoft claims practical quantum computing could be ready in 'years rather than decades' with new computer chip - Fortune - February 20th, 2025 [February 20th, 2025]
- Microsoft unveils chip it says could bring quantum computing within years - The Guardian - February 20th, 2025 [February 20th, 2025]
- Microsoft created a new type of matter for its quantum computing chip - Quartz - February 20th, 2025 [February 20th, 2025]
- Kipu Quantum and IBM Introduce New Optimization Function in Qiskit Functions Catalog - Quantum Computing Report - February 20th, 2025 [February 20th, 2025]
- Microsoft reveals its first quantum computing chip, the Majorana 1 - MSN - February 20th, 2025 [February 20th, 2025]
- How Microsoft is rewriting the rules of reality with quantum computing - Interesting Engineering - February 20th, 2025 [February 20th, 2025]
- Microsoft Makes Quantum Computing Breakthrough With New Chip - The New Stack - February 20th, 2025 [February 20th, 2025]
- Should the Government Fund a Manhattan Project for Quantum Computing? - Built In - February 20th, 2025 [February 20th, 2025]
- This Quantum Computing Stock Just Announced a Key New Sales Strategy and Its First Customer - Barchart - February 20th, 2025 [February 20th, 2025]
- HPE launches slew of Xeon-based Proliant servers which claim to be impervious to quantum computing threats - TechRadar - February 20th, 2025 [February 20th, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 4% - Here's What Happened - MarketBeat - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - MSN - February 20th, 2025 [February 20th, 2025]