Australia bets on US startup that aims to build the first massive quantum computer – Semafor

Quantum computers do not work like traditional computers. Instead of using microscopic transistors, which can represent either ones or zeros, they use particles known as qubits.

Unlike transistors, qubits can exist in multiple states at a time, allowing them to perform different types of calculations. The theory of quantum entanglement allows many qubits to be linked, allowing for an even larger number of computations.

Traditional computers are more or less limited by the laws of classical physics; quantum computers are not.

There are several ways to make qubits, and popular methods include using trapped ions or particles within superconductors.

PsiQuantum believes the best approach is using individual photons as qubits, by manipulating single particles of light. While this is among the most difficult methods of quantum computing, PsiQuantum made a bet that it was ultimately the most practical for large scale quantum computers because of the existing infrastructure built around photonics.

It has partnered with one of the biggest semiconductor manufacturers in the world, Global Foundries, to produce photonic computers with enough fidelity to work with individual photons.

Another major advantage of using photons as qubits is that photons can operate at room temperature. Most other supercomputers require extremely cold temperatures, making them impractical at scale.

PsiQuantums method still requires refrigeration, but not nearly as much as other methods. As a result, it plans to build its quantum computers inside cryogenic cabinets built by a company that makes meat lockers.

Those units are then networked together to increase the total number of qubits. By the end of 2027, PsiQuantum plans to have a quantum computer with 1 million qubits. The largest quantum computers today have about 1,000.

With 1 million qubits, PsiQuantum believes it can perform error correction, essentially making up for mistakes made by the qubits. Traditional computers also require error correction, but in the case of quantum computers, the majority of qubits are used for this task. Shadbolt said that sucks, but thats tough luck.

Networking the refrigerated units together was another hurdle for PsiQuantum. It needed to achieve a breakthrough in photonic switching, essentially sending photons back and forth with an unprecedented amount of fidelity, allowing very few photons to escape.

PsiQuantum revealed some of how it has achieved this in a paper that appeared online Friday.

Read more:
Australia bets on US startup that aims to build the first massive quantum computer - Semafor

Related Posts

Comments are closed.