Connecting the Dots Between Material Properties and Superconducting Qubit Performance – SciTechDaily
Scientists performed transmission electron microscopy and x-ray photoelectron spectroscopy (XPS) at Brookhaven Labs Center for Functional Nanomaterials and National Synchrotron Light Source II to characterize the properties of niobium thin films made into superconducting qubit devices at Princeton University. A transmission electron microscope image of one of these films is shown in the background; overlaid on this image are XPS spectra (colored lines representing the relative concentrations of niobium metal and various niobium oxides as a function of film depth) and an illustration of a qubit device. Through these and other microscopy and spectroscopy studies, the team identified atomic-scale structural and surface chemistry defects that may be causing loss of quantum informationa hurdle to enabling practical quantum computers. Credit: Brookhaven National Laboratory
Brookhaven Lab and Princeton scientists team up to identify sources of loss of quantum information at the atomic scale.
Engineers and materials scientists studying superconducting quantum information bits (qubits)a leading quantum computing material platform based on the frictionless flow of paired electronshave collected clues hinting at the microscopic sources of qubit information loss. This loss is one of the major obstacles in realizing quantum computers capable of stringing together millions of qubits to run demanding computations. Such large-scale, fault-tolerant systems could simulate complicated molecules for drug development, accelerate the discovery of new materials for clean energy, and perform other tasks that would be impossible or take an impractical amount of time (millions of years) for todays most powerful supercomputers.
An understanding of the nature of atomic-scale defects that contribute to qubit information loss is still largely lacking. The team helped bridge this gap between material properties and qubit performance by using state-of-the-art characterization capabilities at the Center for Functional Nanomaterials (CFN) and National Synchrotron Light Source II (NSLS-II), both U.S. Department of Energy (DOE) Office of Science User Facilities at Brookhaven National Laboratory. Their results pinpointed structural and surface chemistry defects in superconducting niobium qubits that may be causing loss.
Anjali Premkumar
Superconducting qubits are a promising quantum computing platform because we can engineer their properties and make them using the same tools used to make regular computers, said Anjali Premkumar, a fourth-year graduate student in the Houck Lab at Princeton University and first author on the Communications Materials paper describing the research. However, they have shorter coherence times than other platforms.
In other words, they cant hold onto information very long before they lose it. Though coherence times have recently improved from microseconds to milliseconds for single qubits, these times significantly decrease when multiple qubits are strung together.
Qubit coherence is limited by the quality of the superconductors and the oxides that will inevitably grow on them as the metal comes into contact with oxygen in the air, continued Premkumar. But, as qubit engineers, we havent characterized our materials in great depth. Here, for the first time, we collaborated with materials experts who can carefully look at the structure and chemistry of our materials with sophisticated tools.
This collaboration was a prequel to the Co-design Center for Quantum Advantage (C2QA), one of five National Quantum Information Science Centers established in 2020 in support of the National Quantum Initiative. Led by Brookhaven Lab, C2QA brings together hardware and software engineers, physicists, materials scientists, theorists, and other experts across national labs, universities, and industry to resolve performance issues with quantum hardware and software. Through materials, devices, and software co-design efforts, the C2QA team seeks to understand and ultimately control material properties to extend coherence times, design devices to generate more robust qubits, optimize algorithms to target specific scientific applications, and develop error-correction solutions.
Andrew Houck
In this study, the team fabricated thin films of niobium metal through three different sputtering techniques. In sputtering, energetic particles are fired at a target containing the desired material; atoms are ejected from the target material and land on a nearby substrate. Members of the Houck Lab performed standard (direct current) sputtering, while Angstrom Engineering applied a new form of sputtering they specialize in (high-power impulse magnetron sputtering, or HiPIMS), where the target is struck with short bursts of high-voltage energy. Angstrom carried out two variations of HiPIMS: normal and with an optimized power and target-substrate geometry.
Back at Princeton, Premkumar made transmon qubit devices from the three sputtered films and placed them in a dilution refrigerator. Inside this refrigerator, temperatures can plunge to near absolute zero (minus 459.67 degrees Fahrenheit), turning qubits superconducting. In these devices, superconducting pairs of electrons tunnel across an insulating barrier of aluminum oxide (Josephson junction) sandwiched between superconducting aluminum layers, which are coupled to capacitor pads of niobium on sapphire. The qubit state changes as the electron pairs go from one side of the barrier to the other. Transmon qubits, co-invented by Houck Lab principal investigator and C2QA Director Andrew Houck, are a leading kind of superconducting qubit because they are highly insensitive to fluctuations in electric and magnetic fields in the surrounding environment; such fluctuations can cause qubit information loss.
For each of the three device types, Premkumar measured the energy relaxation time, a quantity related to the robustness of the qubit state.
The energy relaxation time corresponds to how long the qubit stays in the first excited state and encodes information before it decays to the ground state and loses its information, explained Ignace Jarrige, formerly a physicist at NSLS-II and now a quantum research scientist at Amazon, who led the Brookhaven team for this study.
Ignace Jarrige
Each device had different relaxation times. To understand these differences, the team performed microscopy and spectroscopy at the CFN and NSLS-II.
NSLS-II beamline scientists determined the oxidation states of niobium through x-ray photoemission spectroscopy with soft x-rays at the In situ and Operando Soft X-ray Spectroscopy (IOS) beamline and hard x-rays at the Spectroscopy Soft and Tender (SST-2) beamline. Through these spectroscopy studies, they identified various suboxides located between the metal and the surface oxide layer and containing a smaller amount of oxygen relative to niobium.
We needed the high energy resolution at NSLS-II to distinguish the five different oxidation states of niobium and both hard and soft x-rays, which have different energy levels, to profile these states as a function of depth, explained Jarrige. Photoelectrons generated by soft x-rays only escape from the first few nanometers of the surface, while those generated by hard x-rays can escape from deeper in the films.
At the NSLS-II Soft Inelastic X-ray Scattering (SIX) beamline, the team identified spots with missing oxygen atoms through resonant inelastic x-ray scattering (RIXS). Such oxygen vacancies are defects, which can absorb energy from qubits.
At the CFN, the team visualized film morphology using transmission electron microscopy and atomic force microscopy, and characterized the local chemical makeup near the film surface through electron energy-loss spectroscopy.
Sooyeon Hwang
The microscope images showed grainspieces of individual crystals with atoms arranged in the same orientationsized larger or smaller depending on the sputtering technique, explained coauthor Sooyeon Hwang, a staff scientist in the CFN Electron Microscopy Group. The smaller the grains, the more grain boundaries, or interfaces where different crystal orientations meet. According to the electron energy-loss spectra, one film had not just oxides on the surface but also in the film itself, with oxygen diffused into the grain boundaries.
Their experimental findings at the CFN and NSLS-II revealed correlations between qubit relaxation times and the number and width of grain boundaries and concentration of suboxides near the surface.
Grain boundaries are defects that can dissipate energy, so having too many of them can affect electron transport and thus the ability of qubits to perform computations, said Premkumar. Oxide quality is another potentially important parameter. Suboxides are bad because electrons are not happily paired together.
Going forward, the team will continue their partnership to understand qubit coherence through C2QA. One research direction is to explore whether relaxation times can be improved by optimizing fabrication processes to generate films with larger grain sizes (i.e., minimal grain boundaries) and a single oxidation state. They will also explore other superconductors, including tantalum, whose surface oxides are known to be more chemically uniform.
From this study, we now have a blueprint for how scientists who make qubits and scientists who characterize them can collaborate to understand the microscopic mechanisms limiting qubit performance, said Premkumar. We hope other groups will leverage our collaborative approach to drive the field of superconducting qubits forward.
Reference: Microscopic relaxation channels in materials for superconducting qubits by Anjali Premkumar, Conan Weiland, Sooyeon Hwang, Berthold Jck, Alexander P. M. Place, Iradwikanari Waluyo, Adrian Hunt, Valentina Bisogni, Jonathan Pelliciari, Andi Barbour, Mike S. Miller, Paola Russo, Fernando Camino, Kim Kisslinger, Xiao Tong, Mark S. Hybertsen, Andrew A. Houck and Ignace Jarrige, 1 July 2021, Communications Materials.DOI: 10.1038/s43246-021-00174-7
This work was supported by the DOE Office of Science, National Science Foundation Graduate Research Fellowship, Humboldt Foundation, National Defense Science and Engineering Graduate Fellowship, Materials Research Science and Engineering Center, and Army Research Office. This research used resources of the Electron Microscopy, Proximal Probes, and Theory and Computation Facilities at the CFN, a DOE Nanoscale Science Research Center. The SST-2 beamline at NSLS-II is operated by the National Institute of Standards and Technology.
More:
Connecting the Dots Between Material Properties and Superconducting Qubit Performance - SciTechDaily
- Rigetti vs. Quantum Computing: Which Quantum Stock Is a Smarter Bet? - Zacks Investment Research - July 30th, 2025 [July 30th, 2025]
- World Day Against Trafficking in Persons: Can AI and quantum computing turn the tide? - Finextra Research - July 30th, 2025 [July 30th, 2025]
- SoftBank Uses Quantum Computing to Optimize 5G Base Stations - The Fast Mode - July 30th, 2025 [July 30th, 2025]
- Keysight Technologies and the Quantum Computing Infrastructure Revolution - AInvest - July 30th, 2025 [July 30th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - Yahoo Finance - July 28th, 2025 [July 28th, 2025]
- 3 Quantum Computing Stocks with Positive Investor Sentiment 7/28/2025 - TipRanks - July 28th, 2025 [July 28th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- D-Wave Quantum Inc. Stock (QBTS) Opinions on Quantum Computing Surge - Quiver Quantitative - July 28th, 2025 [July 28th, 2025]
- Could a Quantum Computing Bubble Be About to Pop? History Offers a Clear Answer - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- After Soaring 40% in July, Is It Too Late to Buy This Supercharged Quantum Computing Stock? - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- SuperQ Quantum and Economic Development Lethbridge Hosting Masterclass on Business Optimization Using Quantum Computing with Approximately One Hundred... - July 28th, 2025 [July 28th, 2025]
- Quantum Computing Stocks: Market Pros Flag Names Investors Should Watch - Business Insider - July 27th, 2025 [July 27th, 2025]
- The University of Chicago Partners with IBM to Strengthen Quantum Computing Startups in Illinois - Polsky Center for Entrepreneurship and Innovation - July 27th, 2025 [July 27th, 2025]
- After Aerospace, Quantum Computing Tussle Erupts Between Andhra Pradesh And Karnataka - NDTV - July 27th, 2025 [July 27th, 2025]
- Gov. Pritzker Announces Infleqtion to Accelerate Quantum Computing in Illinois and Locate Computing Headquarters in Chicago - RiverBender.com - July 27th, 2025 [July 27th, 2025]
- Why Quantum Computing Could Be the Biggest Breakthrough Since Fire - Inc.com - July 27th, 2025 [July 27th, 2025]
- The Real Reason Quantum Computing Stocks Are Soaring (It's Not What You Think) - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Is Quantum Computing Inc. the Next Nvidia? - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Why Some Investors Are Betting Big on Quantum Computing as a Moonshot Artificial Intelligence (AI) Play - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- University of Chicago and IBM Provide IBM Quantum System Two Access and Resources for Illinois Quantum Startups - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- 14 Stocks Jim Cramer Discussed As He Went All In On Quantum Computing - Insider Monkey - July 27th, 2025 [July 27th, 2025]
- Whos News: Leadership Updates at Q-CTRL, IonQ, University of Maryland, eleQtron, and JPMorgan Chase - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- Buy the Dip on This Quantum Computing Stock - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- UChicago partners with IBM to strengthen quantum computing startups in Illinois - University of Chicago News - July 24th, 2025 [July 24th, 2025]
- Gold clusters mimic atomic spin properties for scalable quantum computing applications - Phys.org - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2026-2046, with Profiles of 217 Companies Shaping the Quantum Computing Ecosystem, Including Market Leaders,... - July 24th, 2025 [July 24th, 2025]
- Quantum Computing Inc. (QUBT): A Bear Case Theory - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Universal Quantum Joins Open Quantum Institute to Advance Endometriosis Drug Discovery with Quantum Computing - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- Unpacking the Latest Options Trading Trends in Quantum Computing - Nasdaq - July 24th, 2025 [July 24th, 2025]
- Quantum Computing: Stay Far From The Quantum Realm, Strong Sell (NASDAQ:QUBT) - Seeking Alpha - July 24th, 2025 [July 24th, 2025]
- 2025: An eventful year for quantum computing - The New Indian Express - July 24th, 2025 [July 24th, 2025]
- Riverlane and OQC Move Toward Fault-Tolerant Quantum Computing with QEC Integration - HPCwire - July 24th, 2025 [July 24th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Unlocking the Future: How Advanced Ceramics Are Powering Quantum Computing and Semiconductor Innovation - openPR.com - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2025: Revenue, Trends, and Key Players - Yahoo Finance - July 22nd, 2025 [July 22nd, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Mitrade - July 22nd, 2025 [July 22nd, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 7/21/2025 - TipRanks - July 22nd, 2025 [July 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is quantum computing the next big thing in stocks? - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Are We in a Quantum Computing Bubble? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is Quantum Computing Stock a Buy for Less Than $20? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - AOL.com - July 20th, 2025 [July 20th, 2025]
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance | Newswise - Newswise - July 18th, 2025 [July 18th, 2025]
- Quantum Computing Seen As Top Cybersecurity Threat by 65% of Firms - IoT World Today - July 18th, 2025 [July 18th, 2025]
- SuperQ Quantum Computing Partners with Web Summit to Expand Global Reach - TipRanks - July 18th, 2025 [July 18th, 2025]
- They Put Light and Quantum Into One Chip!: Scientists Unveil Silicon Breakthrough That Could Reshape the Future of Computing Forever - Rude Baguette - July 16th, 2025 [July 16th, 2025]
- What is quantum computing? Heres everything you need to know right now - Fast Company - July 16th, 2025 [July 16th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - The Motley Fool - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Breakthrough: Rigetti Doubles Performance with Industry-First 36-Qubit Multi-Chip System - Stock Titan - July 16th, 2025 [July 16th, 2025]
- Why Is Sumitomo Corporation Taking on Quantum Computing? Pioneering Real-World Applications at the Forefront of Social Implementation -... - July 16th, 2025 [July 16th, 2025]
- Oxford Ionics and Iceberg Quantum Partner to Accelerate Fault-Tolerant Quantum Computing - HPCwire - July 16th, 2025 [July 16th, 2025]
- Analysts See over 30% Upside in These 3 Quantum Computing Stocks 7/14/2025 - TipRanks - July 16th, 2025 [July 16th, 2025]
- How Mass. is becoming a hub for the quantum computing industry - WBUR - July 16th, 2025 [July 16th, 2025]
- Ohio awards millions to Miami University for 'quantum computing workforce' - spectrumlocalnews.com - July 16th, 2025 [July 16th, 2025]
- Could IonQ Be the Nvidia of Quantum Computing? - 24/7 Wall St. - July 16th, 2025 [July 16th, 2025]
- Quantum (QUBT) Computing Rallies 8.7% Ahead of Q2 Earnings - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Wanted: enabling technologies in quantum computing for artificial intelligence (AI) and cyber security - Military Aerospace - July 16th, 2025 [July 16th, 2025]
- What's Going On With Quantum Computing Stock Today? - Quantum Computing (NASDAQ:QUBT) - Benzinga - July 16th, 2025 [July 16th, 2025]
- ZenaTech creates quantum computing prototype to advance AI drone solutions - Evertiq - July 16th, 2025 [July 16th, 2025]
- AmpliTechs Cryogenic LNAs Power the Future of Quantum Computing and AI - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Inc. Stocks: Time to Buy or Wait? - StocksToTrade - July 16th, 2025 [July 16th, 2025]
- Think Quantum Computing Will Be the Next Big Thing? These Are the 2 Stocks to Buy Today - 24/7 Wall St. - July 14th, 2025 [July 14th, 2025]
- Rigetti Computing (RGTI): At the Quantum Inflection Point A Leveraged Play on Institutional Adoption - AInvest - July 14th, 2025 [July 14th, 2025]
- NTT Research and Tohoku University Collaborate on Quantum Enhanced Coherent Ising Machines - Quantum Computing Report - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - MSN - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - The Motley Fool - July 12th, 2025 [July 12th, 2025]
- ZenaTech Creates First Quantum Computing Prototype Enabling Disruptive AI Drone Speed and Precision for Future Commercial and US Defense Applications... - July 12th, 2025 [July 12th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 35 years - Capgemini - July 12th, 2025 [July 12th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - Nasdaq - July 12th, 2025 [July 12th, 2025]
- Quantum Computing - Why BTC isn't the biggest worry for COINBASE:BTCUSD by Profit_Through_Patience - TradingView - July 10th, 2025 [July 10th, 2025]
- 3 Artificial Intelligence (AI) Stocks Could Lead the Quantum Computing Revolution - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- D-Wave, Yonsei, Incheon team up to boost quantum computing - Evertiq - July 10th, 2025 [July 10th, 2025]
- Is Rigetti Computing the Top Quantum Computing Stock for the Second Half of 2025? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- SuperQ Quantum Computing Inc. to Begin Trading on CSE as QBTQ - TipRanks - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - AOL.com - July 10th, 2025 [July 10th, 2025]
- This Quantum Computing Stock Just Raised $1 Billion And Analyst Says Its Only Getting Started - IonQ (NYSE:IONQ) - Benzinga - July 10th, 2025 [July 10th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 3-5 years - The Manila Times - July 10th, 2025 [July 10th, 2025]
- Quantum Computing (NASDAQ:QUBT) Shares Down 2.2% - Here's What Happened - MarketBeat - July 10th, 2025 [July 10th, 2025]