Faster, better, stronger: The next stage of global communications networks – Siliconrepublic.com
Prof Bogdan Staszewski from UCDs IoE2 Lab looks at the future of global communications, from faster networks and more powerful computing to the challenges of energy and cybersecurity.
I am an engineer and an engineers job is to design new solutions for building and making things. Engineers concern ourselves with what goes on below the surface, with the building blocks that make up the world in which we live and work, which is constantly evolving.
As electrical and electronics engineers, my colleagues and I work in a microscopic world of integrated circuits the hardware at the deepest level of the networks with which we interact every day and on which we have come to rely.
From global communications to the movement of money, we rely on the fast and secure transmission of quintillions of bits of data every day
Life today revolves around these networks. From global communications to the movement of money, we rely on the fast and secure transmission of quintillions of bits of data every day. And as technological and economic progress is made, there are ever more demands for capacity in these networks, and for ever greater speed, efficiency and security.
The possibilities created by increased connectedness has led to simple but profound challenges. In network terms, how to send the greatest amount of data in the shortest time while reducing the power requirement and cost, is chief among them.
Internet of things (IoT) networks are helping to address major societal challenges. Water regulation in agriculture in drought regions such as California, and dyke and canal infrastructure management in the Netherlands are just two examples. The systems underpinned by networks of sensors and microprocessors, capable of wireless connectivity and energy scavenging have vastly improved efficiency and delivered numerous benefits.
We are looking to even more advanced applications of these technologies, such as autonomously driven vehicles and robotic surgery. We are designing technology that could either completely replace humans or watch and take over when the driver or surgeon gets too tired or distracted.
We are envisaging vehicles that can communicate among themselves and a traffic coordinator to ensure smooth traffic flow with no need for traffic lights. We are preparing for autonomous operating rooms where robotic surgeons can be directed remotely by human surgeons in another country.
This is technology that could deliver superior and safer performance than error-prone human operation, but which is entirely dependent on unimpeachable network speed, efficiency and security that has not yet been achieved.
It is predicted that connected autonomously driven vehicles will eliminate traffic and accidents. We can imagine insurance premiums going down substantially. Of course, we can also imagine an utter disaster if a hacker was able to sneak into these networks, or if an uplink failed at the wrong moment while crucial information was being transmitted.
Hence, the network must be super fast, super secure and have enough bandwidth.
The view from the core of this technology offers a unique perspective on these challenges. Like physicists and geneticists, electrical and electronics engineers look for answers in ever smaller parts inside our networks.
Energy supply and consumption is at the heart of big societal challenges and so too is it one of the most critical considerations for IoT applications. My colleagues and I in the IoE2 Lab at University College Dublin are currently tackling this problem using the latest nanoscale CMOS (complementary metal oxide semiconductor) technologies, in pursuit of a common ultra-low-power system-on-chip hardware platform.
This means an integrated computer and electronics system containing a CPU, memory, and digital, analog, mixed-signal and radio frequency signal processing functions all on one microchip.
Prof Bogdan Staszewski. Image: UCD
As an aside, theres a lot of interest in radio frequency integrated circuits (RFIC) research now because it offers a huge cost benefit for system-on-chip solutions and this will only grow along with the pervasiveness of wireless capabilities in electronics.
Success in this research knows no pinnacle, it is just constantly evolving. We started with 1G and 2G wireless communication. Then came 3G and 4G. Nowadays the carriers are installing 5G networks, but researchers are working on 6G even though there is no agreement about what it will be. Thats the journey that makes us all excited.
The focus will remain on reducing power consumption and increasing performance, so that we can move towards IoT network applications that can perform more and more complex tasks. Power and capacity are key.
The need to economise power consumption is well understood, for a variety of practical, environmental and socio-economic reasons. Data, however, is a less familiar commodity in our world, in spite of the volume we generate on a daily basis, almost universally. And IoT is also greatly accelerating the demands for bandwidth in our networks, which in turn creates issues around equality of access and the enabling of future technology.
At IoE2, were looking at the problem of so many wireless devices coexisting in extremely congested networks, and the solution is cooperative wireless.
Like physicists and geneticists, electrical and electronics engineers look for answers in ever smaller parts inside our networks
Cooperative networks are at the foundation of IoT. At the system level, this means algorithms, components and software needed to make them energy and bandwidth-efficient. But at the physical layer beneath, we need hugely flexible nodes that can operate in an intelligent and cooperative manner.
To put this in context, a single ant cannot possibly do anything useful but the whole colony of ants are physically able to lift an elephant if they work in collaboration. Even a simple IoT node can do wonders if connected to a large network.
For instance, Swarms constellation of nanosatellites has helped harness the potential of IoT networks and their thousands of devices and billions of bits of data. Each nanosatellite is small and rather dumb but, in collaboration with others, they can execute quite sophisticated tasks and at a fraction of the cost of existing networks linked to broadband internet satellites.
Of course, enhancing capacity and enabling technology also requires enhanced security, especially as our networks become capable of storing more and more data.
We have found ways to increase security at the sub-system level, by creating tamper-proof ROM (read-only memory) and microchips that cannot be reverse engineered. We make increasingly sophisticated chips and memory that are perfected to be error-free and operable throughout their lifetime without updates or patches.
But the journey to advance and secure our networks has passed beyond the world of microelectronics, into the quantum world a world of the sub-atomically small. It would be fair to say this is the next real game-changer for ICT and will even surpass the invention of the integrated circuit itself.
While quantum computing will probably remain aloof from most people, the technology arising from its development will have major implications for society and for the evolution of communications and future networks.
The eventual growing use of quantum computing will render normal encryption virtually useless, creating the need for a global rewrite of our networks security
In simple terms, by exploiting quantum mechanics, a quantum computer takes mere seconds or minutes to crack an algorithm that classical computers would take lifetimes to crack. The power of this technology is transformational. It underpins the only form of communication that is provably unhackable and uninterceptable, heralding a new age of data security.
However, the development of quantum technologies will drive quantum communication and destabilise traditional networks. While only the military and proverbial Swiss banks have the need of these super secure communications for now, the eventual growing use of quantum computing will render normal encryption virtually useless, creating the need for a global rewrite of our networks security.
This technology is only a few years away. And even though the major hype of research remains on quantum computing rather than its application in other fields such as communications, its arrival will profoundly change the world as we know it.
Until then, all the possibilities of our future networks will rely on us building upon current technologies to make the communication pipe bigger and cheaper making our networks better, faster, with less power.
By Prof Bogdan Staszewski
Prof Bogdan Staszewski is a professor of electronic circuits at the UCD School of Electrical and Electronic Engineering and Delft University of Technology in the Netherlands. He is part of the IoE2 Lab within the UCD Centre for Internet of Things Engineering and co-founder of Equal1 Labs, conducting research to build the worlds first practical single-chip CMOS quantum computer.
More:
Faster, better, stronger: The next stage of global communications networks - Siliconrepublic.com
- Prediction: These 2 Quantum Computing Stocks Will Be the Biggest AI Winners of 2025 - Yahoo Finance - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - The Motley Fool - February 20th, 2025 [February 20th, 2025]
- Quantum Watch: 3 Quantum Computing Startups Set to Disrupt the Industry - TipRanks - February 20th, 2025 [February 20th, 2025]
- D-Wave, IonQ and Quantum Computing Stocks Pop: What's Driving the Momentum? - Benzinga - February 20th, 2025 [February 20th, 2025]
- Microsoft quantum breakthrough promises to usher in the next era of computing in 'years, not decades' - GeekWire - February 20th, 2025 [February 20th, 2025]
- Microsoft claims practical quantum computing could be ready in 'years rather than decades' with new computer chip - Fortune - February 20th, 2025 [February 20th, 2025]
- Microsoft unveils chip it says could bring quantum computing within years - The Guardian - February 20th, 2025 [February 20th, 2025]
- Microsoft created a new type of matter for its quantum computing chip - Quartz - February 20th, 2025 [February 20th, 2025]
- Kipu Quantum and IBM Introduce New Optimization Function in Qiskit Functions Catalog - Quantum Computing Report - February 20th, 2025 [February 20th, 2025]
- Microsoft reveals its first quantum computing chip, the Majorana 1 - MSN - February 20th, 2025 [February 20th, 2025]
- How Microsoft is rewriting the rules of reality with quantum computing - Interesting Engineering - February 20th, 2025 [February 20th, 2025]
- Microsoft Makes Quantum Computing Breakthrough With New Chip - The New Stack - February 20th, 2025 [February 20th, 2025]
- Should the Government Fund a Manhattan Project for Quantum Computing? - Built In - February 20th, 2025 [February 20th, 2025]
- This Quantum Computing Stock Just Announced a Key New Sales Strategy and Its First Customer - Barchart - February 20th, 2025 [February 20th, 2025]
- HPE launches slew of Xeon-based Proliant servers which claim to be impervious to quantum computing threats - TechRadar - February 20th, 2025 [February 20th, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 4% - Here's What Happened - MarketBeat - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - MSN - February 20th, 2025 [February 20th, 2025]
- The Next Big Thing in Quantum Computing: 3 Startups to Watch - PUNE.NEWS - February 20th, 2025 [February 20th, 2025]
- Quantum Computing Is Closer Than Ever. Everybodys Too Busy to Pay Attention. - The Wall Street Journal - February 14th, 2025 [February 14th, 2025]
- Practical Quantum Computing Five to Ten Years Away: Google CEO - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- Oxford scientists say they have achieved teleportation - The Independent - February 14th, 2025 [February 14th, 2025]
- D-Wave Quantum Announces Another Sale. Its a Milestone in Quantum Computing. - Barron's - February 14th, 2025 [February 14th, 2025]
- This Canadian company is out to stop the biggest quantum computing threat - The Logic - February 14th, 2025 [February 14th, 2025]
- QphoX, Rigetti, and Qblox Demonstrate Optical Readout Technique for Superconducting Qubits - Quantum Computing Report - February 14th, 2025 [February 14th, 2025]
- Quantum computing is already here, experts say - DIGITIMES - February 14th, 2025 [February 14th, 2025]
- FS-ISAC Releases Guidance to Help the Payment Card Industry Mitigate Risks of Quantum Computing - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- Quantum Corporation: Improved Results, But Still Not A Quantum Computing Play - Sell - Seeking Alpha - February 14th, 2025 [February 14th, 2025]
- Why AI firms should follow the example of quantum computing research - New Scientist - February 14th, 2025 [February 14th, 2025]
- Unlocking the Future: IonQ Revolutionizes Quantum Computing at CES 2025! - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Billionaire Bill Gates Thinks Quantum Computing Could Be Ready for Prime Time Within 3 to 5 Years. Could Nvidia Be in Trouble If He's Right? - The... - February 14th, 2025 [February 14th, 2025]
- Quantum Computing in 2025: Will the Asia Pacific Continue Its Advancement? - Telecom Review Asia - February 14th, 2025 [February 14th, 2025]
- Is D-Wave the Future of Computing? Discover the Quantum Leap! - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Revolutionizing Computing: The Rise of D-Wave! The Future of Quantum Technology - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Quantum computing startup OQT announced on the 13th that it has attracted 3 billion won worth of see.. - - February 12th, 2025 [February 12th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- 3 Top-Rated Quantum Computing Stocks To Buy In February 2025 - Barchart - February 12th, 2025 [February 12th, 2025]
- Quantum Computing Breakthrough Brings Us Closer to Universal Simulation - SciTechDaily - February 12th, 2025 [February 12th, 2025]
- Allston quantum computing firm plans to nearly double workforce - The Boston Globe - February 12th, 2025 [February 12th, 2025]
- Quantum Computing: A Beginners Guide to Understanding the Next Revolution - TipRanks - February 12th, 2025 [February 12th, 2025]
- Want to Invest in Quantum Computing? 1 Stock That Is a Great Buy Right Now. - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- 2 Top Quantum Computing Stocks to Buy in February - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- Oxford quantum teleportation breakthrough brings scalable quantum computing closer to reality - Innovation News Network - February 12th, 2025 [February 12th, 2025]
- Preparing for a Quantum Computing Nightmare on the Stock Exchange: What Is Q-Day? - TipRanks - February 12th, 2025 [February 12th, 2025]
- Are Quantum Computing Stocks Worth The Investment? - Seeking Alpha - February 12th, 2025 [February 12th, 2025]
- 7 Best Quantum Computing Stocks to Buy in 2025 | Investing - U.S News & World Report Money - February 12th, 2025 [February 12th, 2025]
- Quantum computing will bring lost Bitcoin 'back in circulation Tether CEO - Cointelegraph - February 12th, 2025 [February 12th, 2025]
- Tether CEO predicts quantum computing could recover lost Bitcoin - crypto.news - February 12th, 2025 [February 12th, 2025]
- Tether CEO Paolo Ardoino Says Quantum Computing Will Allow Hackers To Take Bitcoin From Lost Wallets - The Daily Hodl - February 12th, 2025 [February 12th, 2025]
- Quantum computing wont kill Bitcoin but it might unlock Satoshis wallet, says Tether CEO - DLNews - February 12th, 2025 [February 12th, 2025]
- Partnership Delivers Scalable Quantum Computing with QEC Capability - EE Times - February 7th, 2025 [February 7th, 2025]
- PsiQuantum and Microsoft Selected to Move on to the Final Validation and Co-Design Stage of DARPAs Underexplored Systems for Utility-Scale Quantum... - February 7th, 2025 [February 7th, 2025]
- Google targets commercial quantum computing within five years - Dig Watch Updates - February 7th, 2025 [February 7th, 2025]
- Googles Quantum Computing Chief Challenges Nvidias Jensen Huangs 20-Year Timeline: 'Within Five Years Well See Real-World Applications That Are... - February 7th, 2025 [February 7th, 2025]
- Quantum Leap or Market Mirage? D-Wave Stock and the Future of Computing - Mi Valle - February 7th, 2025 [February 7th, 2025]
- The Promises and Pitfalls of Quantum Computing in Chicago - Illinois Answers Project - February 7th, 2025 [February 7th, 2025]
- Quantum Computing in Smaller Bytes, Thanks to Fordham Students Invention - Fordham University - February 7th, 2025 [February 7th, 2025]
- Is IonQ the Golden Ticket in Quantum Computing or Just a Risky Gamble? - Jomfruland.net - February 7th, 2025 [February 7th, 2025]
- Is IonQ the Future of Quantum Computing or Just a Risky Gamble? - Jomfruland.net - February 7th, 2025 [February 7th, 2025]
- D-Wave, Quantum Computing, and Rigetti Stock Slip on Trade War Fears - Barron's - February 7th, 2025 [February 7th, 2025]
- Discover the Next Wave of Quantum Computing Shares: Are They Worth the Investment? - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Unlocking the Future: How Rigetti, IonQ, and D-Wave Are Pioneering Quantum Computing - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Discover the Next Wave of Quantum Computing Stocks: Are They Worth the Investment? - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Google says commercial quantum computing applications arriving within five years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - Reuters - February 5th, 2025 [February 5th, 2025]
- The necessary next step for quantum and high-performance computing is sustainability, Northeastern experts say - Northeastern University - February 5th, 2025 [February 5th, 2025]
- Bill Gates: There's a possibility quantum computing will become useful in 3 to 5 years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google Bets on Quantum Computing, Aims for Commercial Use in Five Years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Quantum Computing Stocks Tumbled in January. Should You Buy the Dip? - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Bill Gates Predicts Useful Quantum Computing Is 3 to 5 Years Away - IoT World Today - February 5th, 2025 [February 5th, 2025]
- Intel (NASDAQ:INTC), Japanese Government Working Together on Quantum Computing Development - TipRanks - February 5th, 2025 [February 5th, 2025]
- Interested in Investing in Quantum Computing Stocks? Here's a No-Brainer Buy. - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Quobly Opens a New Quantum Chip Test/Characterization Facility and Expanded Offices - Quantum Computing Report - February 5th, 2025 [February 5th, 2025]
- SEALSQ (LAES) Invests $20M in AI and Quantum Computing Startups - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google says quantum computing applications are five years away - Digital Trends - February 5th, 2025 [February 5th, 2025]
- Google (GOOGL) Aims to Release Commercial Quantum Computing Apps Within Five Years - TipRanks - February 5th, 2025 [February 5th, 2025]
- Quantum Leap: Is Rigetti Computing the Next Tech Sensation? - Jomfruland.net - February 5th, 2025 [February 5th, 2025]
- Google Bets on Quantum Computing, Aims for Commercial Use in Fiv - GuruFocus.com - February 5th, 2025 [February 5th, 2025]
- Quantum Computing at the BMW Group. - BMW Group - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - TradingView - February 5th, 2025 [February 5th, 2025]
- D-Wave Launches "Quantum Realized" Brand Campaign to Illustrate Benefits of Todays Quantum Computing - Yahoo Finance - February 5th, 2025 [February 5th, 2025]