Finland brings cryostats and other cool things to quantum computing – ComputerWeekly.com
Fundamental physics research in Finland has led to at least six very successful spin-offs that have supplied quantum technology to the global market for several decades.
According to Pertti Hakonen, an academic at Aalto University, it all started with Olli Viktor Lounasmaa, who in 1965 established the low-temperature laboratory at Aalto University, formerly Helsinki University of Technology. He served as lab director for about 30 years, says Pertti Hakonen, professor at Aalto University.
The low-temperature lab was a long-term investment in basic research in low-temperature physics that has paid off nicely. Hakonen, who has been conducting research in the lab since 1979, witnessed the birth and growth of several spin-offs, including Bluefors, a startup that is now by far the market leader in cryostats for quantum computers.
In the beginning, there was a lot of work on different cryostat designs, trying to beat low-temperature records, says Hakonen. Our present record in our lab is 100 pico-kelvin in the nuclei of rhodium atoms. Thats the nuclear spin temperature in the nuclei of rhodium atoms, not in the electrons.
For quantum computing you dont need temperatures this low. You only need 10 milli-kelvin. A dilution refrigerator is enough for that. In the old days, the cryostat had to be in a liquid helium bath. Bluefors was a pioneer in using liquid-free technology, replacing the liquid helium with a pulse tube cooler, which is cheaper in the long run. The resulting system is called a dry dilution refrigerator.
The pulse tube cooler is based on two stages in series. The first stage brings the temperature down to 70 kelvin and the next stage brings it down to 4 kelvin. Gas is pumped down and up continuously, passing through heat exchangers a process that drops the temperature dramatically.
Bluefors started business with the idea of adding closed-loop dilution refrigeration after pulse tube cooling. In 2005 and 2006, pulse tube coolers became more powerful, says David Gunnarsson, CTO at Bluefors. We used pulse tube coolers to pre-cool at the first two stages, which takes you down to around 3 kelvin. We get the pulse tube coolers from an American company called Cryomech.
Bluefors key differentiator is a closed-loop circulation system, the dilution refrigerator stages, where we circulate a mixture of helium 4 and helium 3 gas. At very cold temperatures, this becomes liquid, which we circulate through a series of well-designed heat exchangers. This approach can get the temperature down to below 10 milli-kelvin. This is where our specialty lies going below the 3 kelvin you get from off-the-shelf coolers.
Bluefors has more than 700 units on the market that are used for both research in publicly funded organisations, and for commercial research and development. One big market that has driven the dilution refrigeration is quantum computing. Anyone currently doing quantum computing based on superconducting qubits is most likely to have a Bluefors cryogenic system.
When a customer recognises the need for a cryogenic system, they talk to Bluefors to decide on the size of the refrigerator. This depends on the tasks they want to do and how many qubits they will use. Then they start looking at the control and measurement infrastructure, which must be tightly integrated with the cryogenic system. Some combination of different components and signalling elements might be added, depending on the frequencies being used. If the control and measurement lines are optical, then optical fibres are included.
As soon as Bluefors and the customer reach an agreement, Bluefors begins to produce the cryogenic enclosure, along with a unique set of options tailored to the use case. Bluefors then runs tests to make sure everything works together and that the enclosure reaches and maintains the temperatures required by the application.
The system has evolved since the company first started marketing its products in 2008. To cool down components with a dilution refrigerator, Bluefors uses a cascade approach, with nested structures that drop an order of magnitude in temperature at each level. The typical configuration includes five stages, with the first stage now bringing the temperature down to 50 kelvin. The temperature goes down to about 4 kelvin at the second stage, and reaches 1 kelvin at the third. It then drops to 100 milli-kelvin at the fourth stage, and at the fifth stage gets down to 10 milli-kelvin, or even below.
The enclosure can cool several qubits, depending on the power dissipation and the temperature the customer needs. A challenge here is that the more power dissipates, the higher the temperature is raised, and every interaction can increase the temperature.
Our most powerful model today can probably run a few hundred qubits in one enclosure, says Gunnarsson. IBM has just announced it has a system with 127 qubits. We can handle that many in one enclosure using the most powerful system we have today.
In most architectures, quantum programs work by sending microwave signals to the qubits. The sequence of signals constitutes a program. Then you have to read the outcome at the end.
The user typically has a microwave source at room temperature, says Gunnarsson. Usually, when it reaches the chips, its at power levels of the order of pico-watts, which is all that is needed to drive a qubit. Pico-watts are one trillionth of a watt a very small power requirement.
That is also a power that is very hard to read out at room temperature. So to read the output from a chip, the signal has to be amplified and taken back up to room temperature. A cascade of amplification is required to get the signal to the level you need.
The microwave control signals and the read-out process at the end constitute a cycle that lasts about 100 nanoseconds. Several such cycles occur per second, collectively making up a quantum program.
Another challenge for quantum computing is to get electronics inside the refrigerators. All operations are performed at very low temperatures, but then the result has to be taken up to room temperature to be read out. Wires are needed to start a program and to read results. The problem is that electrical wires generate heat.
This means that quantum computing lends itself only to programs where the results are not read out until the end one of many reasons interactive application such as Microsoft Excel will never be appropriate for the quantum paradigm.
It also means that every qubit needs at least one control line and then one readout line. Multiplexing can be used to reduce the number of readout lines, but there is still a lot of wiring per qubit. The chips themselves are not that large what takes up most space are all the wires and accompanying components. This makes it challenging to scale up refrigeration systems.
Since Bluefors supplies the cryogenic measurement infrastructure, we developed something we call a high-density solution, where we made it possible to have a six-fold increase in the amount of signal lines you can have in our system, says Gunnarsson. Now you can have up to 1,000 signal lines in a Bluefors state-of-the-art system using our current form factor.
One very recent innovation from Bluefors is a modular concept for cryostats, which is used by IBM. The idea is to combine modules and have information exchanged between them. This modular concept is going to be an interesting development, says Aalto Universitys Hakonen, who since the 1970s has enjoyed a front-row view of the development of quantum technology in Finland.
Finland has a very strong tradition in quantum theory in general and specifically, the quantum physics used in superconducting qubits, which is the platform used by IBM and Google. Now a large area of active research is in quantum algorithms.
How one goes about making a program is a key question, says Sabrina Maniscalco, professor of quantum information and logic at the University of Helsinki. Nowadays, the situation is such that programming quantum computing is much more quantum theory-related than any software ever managed or developed. We are not yet at a stage where a programming language exists that is independent of the device on which it runs. At the moment, quantum computers are really physics experiments.
Finland has long been renowned worldwide for its work in theoretical quantum physics, an area of expertise that plays nicely into the industry growing up around quantum computing. Two other factors that contribute to the growing ecosystem in Finland are the willingness of the government to invest in blue-sky research and the famed Finnish education system, which provides an excellent workforce for startups.
The countrys rich ecosystem of research, stable political support and the education system have resulted in the birth and growth of many startups that develop quantum algorithms. This seems like quite an achievement for a country of only five million inhabitants. But in many ways, Finlands small population is an advantage, creating a tight-knit group of experts, some of whom wear several different hats.
Maniscalco is a case in point. In addition to her research into quantum algorithms at the University of Helsinki, she is also CEO of quantum software startup Algorithmiq, which is focused on developing quantum software for life sciences.
We are trying to make quantum computers more like standard computers, but its still at a very preliminary stage Sabrina Maniscalco, University of Helsinki
As a researcher, I am first of all a theorist, she says. I dont get involved in building hardware, but I have a group of several people developing software. Quantum software is as important as hardware nowadays because quantum computers work very differently from classical computers. Classical software doesnt work at all on quantum systems. You have to completely change the way you program computers if you want to use a quantum computer.
We are trying to make quantum computers more like standard computers, but its still at a very preliminary stage. To program a quantum computer, you need quantum physicists who work with computer scientists, and experts in the application domain for example, quantum chemists. You have to start by creating specific instructions that make sense in terms of the physics experiments that quantum computers are today.
Algorithm developers need to take into account the type of quantum computer they are using the two leading types are superconducting qubits and trapped ions. Then they have to look at the quality of the qubits. They also need to know something about quantum information theory, and about the noise and imperfections that affect the qubits the building blocks of quantum computers.
Conventional computers use error correction, says Maniscalco. Thanks to error correction, the results of the computations that are performed inside your laptop or any computer are reliable. Nothing similar currently exists with quantum computers. A lot of people are currently trying to develop a quantum version of these error correction schemes, but they dont exist yet. So you have to find other strategies to counter this noise and the resulting errors.
Overcoming the noisiness of the current generation of qubits is one of many challenges standing in the way of practical quantum computers. Once those barriers are lifted, the work Maniscalco and other researchers in Finland are doing on quantum algorithms will certainly have an impact around the world.
Read more from the original source:
Finland brings cryostats and other cool things to quantum computing - ComputerWeekly.com
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - Yahoo Finance - July 28th, 2025 [July 28th, 2025]
- 3 Quantum Computing Stocks with Positive Investor Sentiment 7/28/2025 - TipRanks - July 28th, 2025 [July 28th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- D-Wave Quantum Inc. Stock (QBTS) Opinions on Quantum Computing Surge - Quiver Quantitative - July 28th, 2025 [July 28th, 2025]
- Could a Quantum Computing Bubble Be About to Pop? History Offers a Clear Answer - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- After Soaring 40% in July, Is It Too Late to Buy This Supercharged Quantum Computing Stock? - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- SuperQ Quantum and Economic Development Lethbridge Hosting Masterclass on Business Optimization Using Quantum Computing with Approximately One Hundred... - July 28th, 2025 [July 28th, 2025]
- Quantum Computing Stocks: Market Pros Flag Names Investors Should Watch - Business Insider - July 27th, 2025 [July 27th, 2025]
- The University of Chicago Partners with IBM to Strengthen Quantum Computing Startups in Illinois - Polsky Center for Entrepreneurship and Innovation - July 27th, 2025 [July 27th, 2025]
- After Aerospace, Quantum Computing Tussle Erupts Between Andhra Pradesh And Karnataka - NDTV - July 27th, 2025 [July 27th, 2025]
- Gov. Pritzker Announces Infleqtion to Accelerate Quantum Computing in Illinois and Locate Computing Headquarters in Chicago - RiverBender.com - July 27th, 2025 [July 27th, 2025]
- Why Quantum Computing Could Be the Biggest Breakthrough Since Fire - Inc.com - July 27th, 2025 [July 27th, 2025]
- The Real Reason Quantum Computing Stocks Are Soaring (It's Not What You Think) - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Is Quantum Computing Inc. the Next Nvidia? - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Why Some Investors Are Betting Big on Quantum Computing as a Moonshot Artificial Intelligence (AI) Play - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- University of Chicago and IBM Provide IBM Quantum System Two Access and Resources for Illinois Quantum Startups - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- 14 Stocks Jim Cramer Discussed As He Went All In On Quantum Computing - Insider Monkey - July 27th, 2025 [July 27th, 2025]
- Whos News: Leadership Updates at Q-CTRL, IonQ, University of Maryland, eleQtron, and JPMorgan Chase - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- Buy the Dip on This Quantum Computing Stock - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- UChicago partners with IBM to strengthen quantum computing startups in Illinois - University of Chicago News - July 24th, 2025 [July 24th, 2025]
- Gold clusters mimic atomic spin properties for scalable quantum computing applications - Phys.org - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2026-2046, with Profiles of 217 Companies Shaping the Quantum Computing Ecosystem, Including Market Leaders,... - July 24th, 2025 [July 24th, 2025]
- Quantum Computing Inc. (QUBT): A Bear Case Theory - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Universal Quantum Joins Open Quantum Institute to Advance Endometriosis Drug Discovery with Quantum Computing - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- Unpacking the Latest Options Trading Trends in Quantum Computing - Nasdaq - July 24th, 2025 [July 24th, 2025]
- Quantum Computing: Stay Far From The Quantum Realm, Strong Sell (NASDAQ:QUBT) - Seeking Alpha - July 24th, 2025 [July 24th, 2025]
- 2025: An eventful year for quantum computing - The New Indian Express - July 24th, 2025 [July 24th, 2025]
- Riverlane and OQC Move Toward Fault-Tolerant Quantum Computing with QEC Integration - HPCwire - July 24th, 2025 [July 24th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Unlocking the Future: How Advanced Ceramics Are Powering Quantum Computing and Semiconductor Innovation - openPR.com - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2025: Revenue, Trends, and Key Players - Yahoo Finance - July 22nd, 2025 [July 22nd, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Mitrade - July 22nd, 2025 [July 22nd, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 7/21/2025 - TipRanks - July 22nd, 2025 [July 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is quantum computing the next big thing in stocks? - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Are We in a Quantum Computing Bubble? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is Quantum Computing Stock a Buy for Less Than $20? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - AOL.com - July 20th, 2025 [July 20th, 2025]
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance | Newswise - Newswise - July 18th, 2025 [July 18th, 2025]
- Quantum Computing Seen As Top Cybersecurity Threat by 65% of Firms - IoT World Today - July 18th, 2025 [July 18th, 2025]
- SuperQ Quantum Computing Partners with Web Summit to Expand Global Reach - TipRanks - July 18th, 2025 [July 18th, 2025]
- They Put Light and Quantum Into One Chip!: Scientists Unveil Silicon Breakthrough That Could Reshape the Future of Computing Forever - Rude Baguette - July 16th, 2025 [July 16th, 2025]
- What is quantum computing? Heres everything you need to know right now - Fast Company - July 16th, 2025 [July 16th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - The Motley Fool - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Breakthrough: Rigetti Doubles Performance with Industry-First 36-Qubit Multi-Chip System - Stock Titan - July 16th, 2025 [July 16th, 2025]
- Why Is Sumitomo Corporation Taking on Quantum Computing? Pioneering Real-World Applications at the Forefront of Social Implementation -... - July 16th, 2025 [July 16th, 2025]
- Oxford Ionics and Iceberg Quantum Partner to Accelerate Fault-Tolerant Quantum Computing - HPCwire - July 16th, 2025 [July 16th, 2025]
- Analysts See over 30% Upside in These 3 Quantum Computing Stocks 7/14/2025 - TipRanks - July 16th, 2025 [July 16th, 2025]
- How Mass. is becoming a hub for the quantum computing industry - WBUR - July 16th, 2025 [July 16th, 2025]
- Ohio awards millions to Miami University for 'quantum computing workforce' - spectrumlocalnews.com - July 16th, 2025 [July 16th, 2025]
- Could IonQ Be the Nvidia of Quantum Computing? - 24/7 Wall St. - July 16th, 2025 [July 16th, 2025]
- Quantum (QUBT) Computing Rallies 8.7% Ahead of Q2 Earnings - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Wanted: enabling technologies in quantum computing for artificial intelligence (AI) and cyber security - Military Aerospace - July 16th, 2025 [July 16th, 2025]
- What's Going On With Quantum Computing Stock Today? - Quantum Computing (NASDAQ:QUBT) - Benzinga - July 16th, 2025 [July 16th, 2025]
- ZenaTech creates quantum computing prototype to advance AI drone solutions - Evertiq - July 16th, 2025 [July 16th, 2025]
- AmpliTechs Cryogenic LNAs Power the Future of Quantum Computing and AI - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Inc. Stocks: Time to Buy or Wait? - StocksToTrade - July 16th, 2025 [July 16th, 2025]
- Think Quantum Computing Will Be the Next Big Thing? These Are the 2 Stocks to Buy Today - 24/7 Wall St. - July 14th, 2025 [July 14th, 2025]
- Rigetti Computing (RGTI): At the Quantum Inflection Point A Leveraged Play on Institutional Adoption - AInvest - July 14th, 2025 [July 14th, 2025]
- NTT Research and Tohoku University Collaborate on Quantum Enhanced Coherent Ising Machines - Quantum Computing Report - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - MSN - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - The Motley Fool - July 12th, 2025 [July 12th, 2025]
- ZenaTech Creates First Quantum Computing Prototype Enabling Disruptive AI Drone Speed and Precision for Future Commercial and US Defense Applications... - July 12th, 2025 [July 12th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 35 years - Capgemini - July 12th, 2025 [July 12th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - Nasdaq - July 12th, 2025 [July 12th, 2025]
- Quantum Computing - Why BTC isn't the biggest worry for COINBASE:BTCUSD by Profit_Through_Patience - TradingView - July 10th, 2025 [July 10th, 2025]
- 3 Artificial Intelligence (AI) Stocks Could Lead the Quantum Computing Revolution - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- D-Wave, Yonsei, Incheon team up to boost quantum computing - Evertiq - July 10th, 2025 [July 10th, 2025]
- Is Rigetti Computing the Top Quantum Computing Stock for the Second Half of 2025? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- SuperQ Quantum Computing Inc. to Begin Trading on CSE as QBTQ - TipRanks - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - AOL.com - July 10th, 2025 [July 10th, 2025]
- This Quantum Computing Stock Just Raised $1 Billion And Analyst Says Its Only Getting Started - IonQ (NYSE:IONQ) - Benzinga - July 10th, 2025 [July 10th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 3-5 years - The Manila Times - July 10th, 2025 [July 10th, 2025]
- Quantum Computing (NASDAQ:QUBT) Shares Down 2.2% - Here's What Happened - MarketBeat - July 10th, 2025 [July 10th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - The Motley Fool - July 8th, 2025 [July 8th, 2025]
- Individual defects in superconducting quantum circuits imaged for the first time - Scientific Computing World - July 8th, 2025 [July 8th, 2025]
- Horses for Courses: Where Quantum Computing Is, and Isnt, the Answer - RealClearDefense - July 8th, 2025 [July 8th, 2025]
- Satoshi-Era Bitcoin (BTC) Whale's $8B Move Explained Amid Looming Quantum Computing Threat to Crypto - Blockchain News - July 8th, 2025 [July 8th, 2025]