Finland brings cryostats and other cool things to quantum computing – ComputerWeekly.com
Fundamental physics research in Finland has led to at least six very successful spin-offs that have supplied quantum technology to the global market for several decades.
According to Pertti Hakonen, an academic at Aalto University, it all started with Olli Viktor Lounasmaa, who in 1965 established the low-temperature laboratory at Aalto University, formerly Helsinki University of Technology. He served as lab director for about 30 years, says Pertti Hakonen, professor at Aalto University.
The low-temperature lab was a long-term investment in basic research in low-temperature physics that has paid off nicely. Hakonen, who has been conducting research in the lab since 1979, witnessed the birth and growth of several spin-offs, including Bluefors, a startup that is now by far the market leader in cryostats for quantum computers.
In the beginning, there was a lot of work on different cryostat designs, trying to beat low-temperature records, says Hakonen. Our present record in our lab is 100 pico-kelvin in the nuclei of rhodium atoms. Thats the nuclear spin temperature in the nuclei of rhodium atoms, not in the electrons.
For quantum computing you dont need temperatures this low. You only need 10 milli-kelvin. A dilution refrigerator is enough for that. In the old days, the cryostat had to be in a liquid helium bath. Bluefors was a pioneer in using liquid-free technology, replacing the liquid helium with a pulse tube cooler, which is cheaper in the long run. The resulting system is called a dry dilution refrigerator.
The pulse tube cooler is based on two stages in series. The first stage brings the temperature down to 70 kelvin and the next stage brings it down to 4 kelvin. Gas is pumped down and up continuously, passing through heat exchangers a process that drops the temperature dramatically.
Bluefors started business with the idea of adding closed-loop dilution refrigeration after pulse tube cooling. In 2005 and 2006, pulse tube coolers became more powerful, says David Gunnarsson, CTO at Bluefors. We used pulse tube coolers to pre-cool at the first two stages, which takes you down to around 3 kelvin. We get the pulse tube coolers from an American company called Cryomech.
Bluefors key differentiator is a closed-loop circulation system, the dilution refrigerator stages, where we circulate a mixture of helium 4 and helium 3 gas. At very cold temperatures, this becomes liquid, which we circulate through a series of well-designed heat exchangers. This approach can get the temperature down to below 10 milli-kelvin. This is where our specialty lies going below the 3 kelvin you get from off-the-shelf coolers.
Bluefors has more than 700 units on the market that are used for both research in publicly funded organisations, and for commercial research and development. One big market that has driven the dilution refrigeration is quantum computing. Anyone currently doing quantum computing based on superconducting qubits is most likely to have a Bluefors cryogenic system.
When a customer recognises the need for a cryogenic system, they talk to Bluefors to decide on the size of the refrigerator. This depends on the tasks they want to do and how many qubits they will use. Then they start looking at the control and measurement infrastructure, which must be tightly integrated with the cryogenic system. Some combination of different components and signalling elements might be added, depending on the frequencies being used. If the control and measurement lines are optical, then optical fibres are included.
As soon as Bluefors and the customer reach an agreement, Bluefors begins to produce the cryogenic enclosure, along with a unique set of options tailored to the use case. Bluefors then runs tests to make sure everything works together and that the enclosure reaches and maintains the temperatures required by the application.
The system has evolved since the company first started marketing its products in 2008. To cool down components with a dilution refrigerator, Bluefors uses a cascade approach, with nested structures that drop an order of magnitude in temperature at each level. The typical configuration includes five stages, with the first stage now bringing the temperature down to 50 kelvin. The temperature goes down to about 4 kelvin at the second stage, and reaches 1 kelvin at the third. It then drops to 100 milli-kelvin at the fourth stage, and at the fifth stage gets down to 10 milli-kelvin, or even below.
The enclosure can cool several qubits, depending on the power dissipation and the temperature the customer needs. A challenge here is that the more power dissipates, the higher the temperature is raised, and every interaction can increase the temperature.
Our most powerful model today can probably run a few hundred qubits in one enclosure, says Gunnarsson. IBM has just announced it has a system with 127 qubits. We can handle that many in one enclosure using the most powerful system we have today.
In most architectures, quantum programs work by sending microwave signals to the qubits. The sequence of signals constitutes a program. Then you have to read the outcome at the end.
The user typically has a microwave source at room temperature, says Gunnarsson. Usually, when it reaches the chips, its at power levels of the order of pico-watts, which is all that is needed to drive a qubit. Pico-watts are one trillionth of a watt a very small power requirement.
That is also a power that is very hard to read out at room temperature. So to read the output from a chip, the signal has to be amplified and taken back up to room temperature. A cascade of amplification is required to get the signal to the level you need.
The microwave control signals and the read-out process at the end constitute a cycle that lasts about 100 nanoseconds. Several such cycles occur per second, collectively making up a quantum program.
Another challenge for quantum computing is to get electronics inside the refrigerators. All operations are performed at very low temperatures, but then the result has to be taken up to room temperature to be read out. Wires are needed to start a program and to read results. The problem is that electrical wires generate heat.
This means that quantum computing lends itself only to programs where the results are not read out until the end one of many reasons interactive application such as Microsoft Excel will never be appropriate for the quantum paradigm.
It also means that every qubit needs at least one control line and then one readout line. Multiplexing can be used to reduce the number of readout lines, but there is still a lot of wiring per qubit. The chips themselves are not that large what takes up most space are all the wires and accompanying components. This makes it challenging to scale up refrigeration systems.
Since Bluefors supplies the cryogenic measurement infrastructure, we developed something we call a high-density solution, where we made it possible to have a six-fold increase in the amount of signal lines you can have in our system, says Gunnarsson. Now you can have up to 1,000 signal lines in a Bluefors state-of-the-art system using our current form factor.
One very recent innovation from Bluefors is a modular concept for cryostats, which is used by IBM. The idea is to combine modules and have information exchanged between them. This modular concept is going to be an interesting development, says Aalto Universitys Hakonen, who since the 1970s has enjoyed a front-row view of the development of quantum technology in Finland.
Finland has a very strong tradition in quantum theory in general and specifically, the quantum physics used in superconducting qubits, which is the platform used by IBM and Google. Now a large area of active research is in quantum algorithms.
How one goes about making a program is a key question, says Sabrina Maniscalco, professor of quantum information and logic at the University of Helsinki. Nowadays, the situation is such that programming quantum computing is much more quantum theory-related than any software ever managed or developed. We are not yet at a stage where a programming language exists that is independent of the device on which it runs. At the moment, quantum computers are really physics experiments.
Finland has long been renowned worldwide for its work in theoretical quantum physics, an area of expertise that plays nicely into the industry growing up around quantum computing. Two other factors that contribute to the growing ecosystem in Finland are the willingness of the government to invest in blue-sky research and the famed Finnish education system, which provides an excellent workforce for startups.
The countrys rich ecosystem of research, stable political support and the education system have resulted in the birth and growth of many startups that develop quantum algorithms. This seems like quite an achievement for a country of only five million inhabitants. But in many ways, Finlands small population is an advantage, creating a tight-knit group of experts, some of whom wear several different hats.
Maniscalco is a case in point. In addition to her research into quantum algorithms at the University of Helsinki, she is also CEO of quantum software startup Algorithmiq, which is focused on developing quantum software for life sciences.
We are trying to make quantum computers more like standard computers, but its still at a very preliminary stage Sabrina Maniscalco, University of Helsinki
As a researcher, I am first of all a theorist, she says. I dont get involved in building hardware, but I have a group of several people developing software. Quantum software is as important as hardware nowadays because quantum computers work very differently from classical computers. Classical software doesnt work at all on quantum systems. You have to completely change the way you program computers if you want to use a quantum computer.
We are trying to make quantum computers more like standard computers, but its still at a very preliminary stage. To program a quantum computer, you need quantum physicists who work with computer scientists, and experts in the application domain for example, quantum chemists. You have to start by creating specific instructions that make sense in terms of the physics experiments that quantum computers are today.
Algorithm developers need to take into account the type of quantum computer they are using the two leading types are superconducting qubits and trapped ions. Then they have to look at the quality of the qubits. They also need to know something about quantum information theory, and about the noise and imperfections that affect the qubits the building blocks of quantum computers.
Conventional computers use error correction, says Maniscalco. Thanks to error correction, the results of the computations that are performed inside your laptop or any computer are reliable. Nothing similar currently exists with quantum computers. A lot of people are currently trying to develop a quantum version of these error correction schemes, but they dont exist yet. So you have to find other strategies to counter this noise and the resulting errors.
Overcoming the noisiness of the current generation of qubits is one of many challenges standing in the way of practical quantum computers. Once those barriers are lifted, the work Maniscalco and other researchers in Finland are doing on quantum algorithms will certainly have an impact around the world.
Read more from the original source:
Finland brings cryostats and other cool things to quantum computing - ComputerWeekly.com
- Quantum Computing Can Be Brought to the Masses, if It Is Decentralized - CCN.com - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Specialist IonQ (IONQ) May Have Reached The End Of The Road - Barchart - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - Fortune - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Sink as Nvidia CEO Says Tech Is 15 to 30 Years Away - Investopedia - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Stocks Rigetti Computing, Quantum Computing, and D-Wave Computing All Plunged Today - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Crashed -- Here's Why - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jen-Hsun Huang's simple reminder that useful quantum computing is a long way off has somehow caused industry stocks to plummet - PC Gamer - January 9th, 2025 [January 9th, 2025]
- How Quantum Computing Could Advance One Health - Impakter - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks are having a rough start to 2025: IonQ, D-Wave, Rigetti tank after Nvidia CEO predicts 20-year horizon - Fast Company - January 9th, 2025 [January 9th, 2025]
- Quantum Computing, Inc. Announces Private Placement of Common Stock for Proceeds of $100 Million - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- 2025 will see huge advances in quantum computing. So what is a quantum chip and how does it work? - The Conversation - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - AOL - January 9th, 2025 [January 9th, 2025]
- Collaboration to explore the use of graphene technology in quantum computing - The Manufacturer - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks tumble after Nvidia boss Jensen Huang says the tech is still 20 years away - Markets Insider - January 9th, 2025 [January 9th, 2025]
- Want to Buy a Quantum Computing Stock in 2025? You Might Consider This Quantum Computing ETF. - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Ride the Quantum Computing Wave with These 2 Stocks: RGTI, QBTS - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- Shaping the Future of Quantum Computing in the United Arab Emirates (UAE) - Quantum Computing Report - January 9th, 2025 [January 9th, 2025]
- How Nvidia CEO Jensen Huang's one sentence wiped out $8 billion in market cap of quantum computing compan - The Times of India - January 9th, 2025 [January 9th, 2025]
- Will This Quantum Computing Stock Be a Must-Own in 2025? - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum-computing stocks tumble on Nvidia CEOs comment that theyre decades away from being very useful - Sherwood News - January 9th, 2025 [January 9th, 2025]
- Analyzing Quantum Computing Has Been The Most Challenging Project In My Career (NASDAQ:QUBT) - Seeking Alpha - January 3rd, 2025 [January 3rd, 2025]
- Norma and Mabel Quantum Partner to Launch Integrated Quantum Computing System in Korea - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- How Microsoft and Partners are Shaping the Future of Quantum Computing - The Quantum Insider - January 3rd, 2025 [January 3rd, 2025]
- One Quantum Computing ETF to Buy Hand Over Fist as Googles Willow Supercharges the Market - Barchart - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram Inc. Develops Semiconductor Quantum Dot Hole Spin Qubit Technology, Advancing the Frontiers of Quantum Computing - Yahoo Finance - January 3rd, 2025 [January 3rd, 2025]
- Quantum Applications in the Automotive Industry - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer Warns 'Day Is Not Near Enough To Justify The Current Valuations' Of Quantum Computing, Nuclear Power Stocks - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram's Stock Surges 31% on Quantum Computing Breakthrough: What This Means for the Future of Tech - The Africa Logistics - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Stocks Like Rigetti Computing Are Soaring And This ETF Lets Investors Participate In The Boom Story - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- Future Industry Growth Of Commercial Quantum Computing - openPR - January 3rd, 2025 [January 3rd, 2025]
- GCAN to Explore Strategic Alternatives in Artificial Intelligence and Quantum Computing - GlobeNewswire - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer talks being cautious with nuclear power and quantum computing stocks - MSN - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - December 27th, 2024 [December 27th, 2024]
- Should You Buy Quantum Computing Stocks in 2025? - The Motley Fool - December 27th, 2024 [December 27th, 2024]
- Rigetti Stock Doubles in Days: Here's the Quantum Computing Stock's Next Target - Money Morning - December 27th, 2024 [December 27th, 2024]
- 3 Quantum Computing Stocks Surging to End the Year - Schaeffers Research - December 27th, 2024 [December 27th, 2024]
- Quantum Computing Advances in 2024 Put Security In Spotlight - Dark Reading - December 27th, 2024 [December 27th, 2024]
- Daejeon City Partners with Norma and National Nanofab Center to Advance Quantum Computing - Quantum Computing Report - December 27th, 2024 [December 27th, 2024]
- Why IonQ Is the Best Quantum Computing Stock to Buy Right Now - The Motley Fool - December 27th, 2024 [December 27th, 2024]
- Singapore Startup's Quantum Controller Aimed at Bridging the Gap Between Traditional and Quantum Computing - The Quantum Insider - December 27th, 2024 [December 27th, 2024]
- 2 Quantum Computing Stocks Poised for Big Gains: Get Their Price Targets Here - Money Morning - December 27th, 2024 [December 27th, 2024]
- SCIENCE NOTEBOOK | More Efficient Quantum Computing, Aggressive Lowering of BP of Type 2 Diabetes Patients, and Heat-Related Mortality Due to Climate... - December 27th, 2024 [December 27th, 2024]
- Rigetti Computing leads quantum stocks higher to end week - Seeking Alpha - December 27th, 2024 [December 27th, 2024]
- Quantum Computing Stock QUBT Has More Than Doubled While Bitcoin Has Dropped Since Google's 'Willow' Reveal: What Does This Mean? - Benzinga - December 27th, 2024 [December 27th, 2024]
- Three Ways Nvidia (NVDA) Benefits From The Quantum Computing Revolution - Yahoo Finance - December 27th, 2024 [December 27th, 2024]
- Quantum Stocks: Avoid Rigetti Computing And Buy IonQ Instead (NYSE:IONQ) - Seeking Alpha - December 27th, 2024 [December 27th, 2024]
- SEALSQ Secures $60.0 Million in Total Funding to Advance Post-Quantum Cryptography Semiconductor Technology - Quantum Computing Report - December 27th, 2024 [December 27th, 2024]
- Quantum Computing Shares Soar! Investors Eye the Future. - Jomfruland.net - December 27th, 2024 [December 27th, 2024]
- What Googles quantum computing breakthrough Willow means for the future of bitcoin and other cryptos - CNBC - December 22nd, 2024 [December 22nd, 2024]
- Quantum computing will fortify Bitcoin signatures: Adam Back - Cointelegraph - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing: The New AI? A Look at the Rapidly Expanding Market and Top Stocks For 2025 - Benzinga - December 22nd, 2024 [December 22nd, 2024]
- D-Wave Quantum (QBTS) Riding High on the Quantum Computing Tide - TipRanks - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing, BlackBerry And Lucid Group Are Among Top Mid Cap Gainers Last Week (December 16-20): Are The Others In Your Portfolio? - Benzinga - December 22nd, 2024 [December 22nd, 2024]
- Quantum computing stocks are having a great 2024: QUBT, D-Wave, Rigetti soar on enthusiasm for the cutting-edge tech - Fast Company - December 22nd, 2024 [December 22nd, 2024]
- IBMs stock could ride the coattails of the quantum-computing rally. Heres how. - MarketWatch - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Stock Skyrockets Further on NASA Contract - Investopedia - December 22nd, 2024 [December 22nd, 2024]
- Is the Quantum Computing Stock Rally Over So Soon? - TipRanks - December 22nd, 2024 [December 22nd, 2024]
- Quantum computing stocks mixed as eye-popping rally slows a bit - Seeking Alpha - December 22nd, 2024 [December 22nd, 2024]
- Bitcoin would need over 300 days of downtime to adequately defend itself from the 'imminent' threat of quantum computing, research finds - Fortune - December 22nd, 2024 [December 22nd, 2024]
- Rigetti Stock Investors: Here's What You Need to Know About This Quantum Computing Stock - The Motley Fool - December 22nd, 2024 [December 22nd, 2024]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2025 - Yahoo Finance - December 22nd, 2024 [December 22nd, 2024]
- New day dawns for quantum computing in the UK - physicsworld.com - December 22nd, 2024 [December 22nd, 2024]
- What's Going On With Quantum Computing (QUBT) Stock? - Benzinga - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Stock Investors: Here's What You Need to Know - The Motley Fool - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Is Coming And Lawyers Arent Ready - Above the Law - December 22nd, 2024 [December 22nd, 2024]
- 2024: The Year of Quantum Computing Roadmaps - Quantum Computing Report - December 22nd, 2024 [December 22nd, 2024]
- The Future is Here. Unlocking the Mysteries of Quantum Computing. - Qhubo - December 22nd, 2024 [December 22nd, 2024]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2025 - The Motley Fool - December 22nd, 2024 [December 22nd, 2024]
- Quantum walk computing unlocks new potential in quantum science and technology - MSN - December 22nd, 2024 [December 22nd, 2024]
- Investing in the Future of Quantum Computing: Stocks to Watch Now - MarketBeat - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Inches Closer to Reality After Another Google Breakthrough - The New York Times - December 14th, 2024 [December 14th, 2024]
- How Google's Willow is A Quantum Leap in Computing Tech - Technology Magazine - December 14th, 2024 [December 14th, 2024]
- Google claims quantum computing milestone but the tech can't solve real-world problems yet - CNBC - December 14th, 2024 [December 14th, 2024]
- Ten septillion years: Google makes another quantum computing breakthrough - Semafor - December 14th, 2024 [December 14th, 2024]
- BMW Group and Airbus reveal winners of Quantum Computing Challenge - BMW Press - December 14th, 2024 [December 14th, 2024]
- The Race for Fault-Tolerant Quantum Computing: Unveiling the Next Leap | by Disruptive Concepts | Dec, 2024 - Medium - December 14th, 2024 [December 14th, 2024]
- Can the Rally in Alphabet (GOOGL) Stock Continue with New Quantum Computing Chip? - Yahoo Finance - December 14th, 2024 [December 14th, 2024]
- Unlocking the Full Power of Quantum Computing With a Revolutionary Superconducting Processor - SciTechDaily - December 14th, 2024 [December 14th, 2024]
- What Googles Willow chip means for the future of quantum computing, AI, and encryption - The Indian Express - December 14th, 2024 [December 14th, 2024]
- Think AI Is Baffling? Heres How to Pretend You Understand Quantum Computing. - Barron's - December 14th, 2024 [December 14th, 2024]