Google Quantum AI Breaks Ground: Unraveling the Mystery of Non-Abelian Anyons – Neuroscience News
Summary: For the first time, Google Quantum AI has observed the peculiar behavior of non-Abelian anyons, particles with the potential to revolutionize quantum computing by making operations more resistant to noise.
Non-Abelian anyons have the unique feature of retaining a sort of memory, allowing us to determine when they have been exchanged, even though they are identical.
The team successfully used these anyons to perform quantum computations, opening a new path towards topological quantum computation. This significant discovery could be instrumental in the future of fault-tolerant topological quantum computing.
Key Facts:
Source: Google Quantum AI
Our intuition tells us that it should be impossible to see whether two identical objects have been swapped back and forth, and for all particles observed to date, that has been the case. Until now.
Non-Abelian anyons the only particles that have been predicted to break this rule have been sought for their fascinating features and their potential to revolutionize quantum computing by making the operations more robust to noise.
Microsoft and others have chosen this approach for their quantum computing effort. But after decades of efforts by researchers in the field, observing non-Abelian anyons and their strange behavior has proven challenging, to say the least.
In apaperposted on the preprint server Arxiv.org last October andpublishedinNaturetoday, researchers at Google Quantum AI announced that they had used one of their superconducting quantum processors to observe the peculiar behavior of non-Abelian anyons for the first time ever.
They also demonstrated how this phenomenon could be used to perform quantum computations. Earlier this week the quantum computing company Quantinuum released another study on the topic, complementing Googles initial discovery.
These new results open a new path toward topological quantum computation, in which operations are achieved by winding non-Abelian anyons around each other like strings in a braid.
Google Quantum AI team member and first author of the manuscript, Trond I. Andersen says, Observing the bizarre behavior of non-Abelian anyons for the first time really highlights the type of exciting phenomena we can now access with quantum computers.
Imagine youre shown two identical objects and then asked to close your eyes. Open them again, and you see the same two objects. How can you determine if they have been swapped? Intuition says that if the objects are truly identical, there is no way to tell.
Quantum mechanics supports this intuition, but only in our familiar three-dimensional world. If the identical objects are restricted to only move in a two-dimensional plane, sometimes, our intuition can fail and quantum mechanics allows for something bizarre: non-Abelian anyons retain a sort of memory it is possible to tell when two of them have been exchanged, despite being completely identical.
This memory of the non-Abelian anyons can be thought of as a continuous line in space-time: the particles so-called world-line. When two non-Abelian anyons are exchanged, their world-lines wrap around one another. Wrap them in the right way, and the resulting knots and braids form the basic operations of a topological quantum computer.
The team started by preparing their superconducting qubits in an entangled quantumstate that is well represented as a checkerboard a familiar configuration for the Google team, who recentlydemonstrated a milestone in quantum error correctionusing this setup. In the checkerboard arrangement, related but less useful particles called Abelian anyons can emerge.
To realize non-Abelian anyons, the researchers stretched and squashed the quantum state of their qubits to transform the checkered pattern into oddly shaped polygons. Particular vertices in these polygons hosted the non-Abelian anyons.
Using aprotocoldeveloped by Eun-Ah Kim at Cornell University and former postdoc Yuri Lensky, the team could then move the non-Abelian anyons around by continuing to deform the lattice and shifting the locations of the non-Abelian vertices.
In a series of experiments, the researchers at Google observed the behavior of these non-Abelian anyons and how they interacted with the more mundane Abelian anyons.
Weaving the two types of particles around one another yielded bizarre phenomena particles mysteriously disappeared, reappeared and shapeshifted from one type to another as they wound around one another and collided.
Most importantly, the team observed the hallmark of non-Abelian anyons: when two of them were swapped, it caused a measurable change in the quantum state of their system a striking phenomenon that had never been observed before.
Finally, the team demonstrated how braiding of non-Abelian anyons might be used in quantum computations. By braiding several non-Abelian anyons together, they were able to create a well-known quantum entangled state called the Greenberger-Horne-Zeilinger (GHZ) state.
The physics of non-Abelian particles is also at the core of the approach that Microsoft has chosen for their quantum computing effort. While they are attempting to engineer material systems that intrinsically host these anyons, the Google team has now shown that the same type of physics can be realized on their superconducting processors.
This week the quantum computing company Quantinuum released an impressive complementary study that also demonstrated non-Abelian braiding, in this case using a trapped-ion quantum processor. Andersen is excited to see other quantum computing groups observing non-Abelian braiding as well.
He says, It will be very interesting to see how non-Abelian anyons are employed in quantum computing in the future, and whether their peculiar behavior can hold the key to fault-tolerant topological quantum computing.
Author: Katie McCormickSource: Google Quantum AIContact: Katie McCormick Google Quantum AIImage: The image is credited to Neuroscience News
Original Research: Open access.Non-Abelian braiding of graph vertices in a superconducting processor by Trond I. Andersen et al. Nature
Abstract
Non-Abelian braiding of graph vertices in a superconducting processor
Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to dateincluding fermions, bosons and Abelian anyonsthis principle guarantees that the braiding of identical particles leaves the system unchanged.
However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability.
Despite the well-developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena.
Whereas efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasiparticles, superconducting quantum processors allow for directly manipulating the many-body wavefunction by means of unitary gates.
Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocolto create and braid them.
This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of using the anyons for quantum computation and use braiding to create an entangled state of anyons encoding three logical qubits.
Our work provides new insights about non-Abelian braiding and, through the future inclusion of error correction to achieve topological protection, could open a path towards fault-tolerant quantum computing.
Go here to see the original:
Google Quantum AI Breaks Ground: Unraveling the Mystery of Non-Abelian Anyons - Neuroscience News
- 3 Quantum Computing Stocks That Could Deliver Decades of Explosive Growth - The Motley Fool - June 29th, 2025 [June 29th, 2025]
- QUANTUM COMPUTING INVESTIGATION INITIATED by Former Louisiana Attorney General: Kahn Swick & Foti, LLC Investigates the Officers and Directors of... - June 29th, 2025 [June 29th, 2025]
- KT and HEQA Security Partner to Deploy Quantum Key Distribution for Telecom Infrastructure - Quantum Computing Report - June 29th, 2025 [June 29th, 2025]
- Quantum computing on the horizon: What leaders need to know. - McKinsey & Company - June 28th, 2025 [June 28th, 2025]
- 1 Quantum Computing Stock That Is a Glaring Buy, According to Wall Street - Yahoo Finance - June 28th, 2025 [June 28th, 2025]
- 3 Quantum Computing Stocks on Verge of a Breakout: QBTS, IONQ, QUBT - Yahoo Finance - June 28th, 2025 [June 28th, 2025]
- Quantum Computing Achieves First Real-World Milestone in Image Recognition - ScienceBlog.com - June 28th, 2025 [June 28th, 2025]
- IonQ vs IBM: Which Quantum Computing Stock Is the Better Buy Today? - Yahoo Finance - June 28th, 2025 [June 28th, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - MSN - June 28th, 2025 [June 28th, 2025]
- 1 Quantum Computing Stock That Is a Glaring Buy, According to Wall Street - MSN - June 28th, 2025 [June 28th, 2025]
- 1 Quantum Computing Stock That Is a Glaring Buy, According to Wall Street - The Motley Fool - June 28th, 2025 [June 28th, 2025]
- Are Quantum Computing Stocks Becoming the Next AI? - The Motley Fool - June 28th, 2025 [June 28th, 2025]
- F.D. Flam: Quantum computing could be the future of drug development - Pioneer Press - June 28th, 2025 [June 28th, 2025]
- Quantum Computing Completes $200 Million Private Placement. Why the Stock Is Falling. - Barron's - June 28th, 2025 [June 28th, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - Yahoo Finance - June 28th, 2025 [June 28th, 2025]
- The Smartest Way to Play Quantum Computing May Already Be in Your Portfolio - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- Quantum Computing News: New Roadmaps, Real Timelines, and Rising Stocks - TipRanks - June 24th, 2025 [June 24th, 2025]
- Will Quantum Computing Stocks Soar in the Second Half? - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- 2 Quantum Computing Stocks That Could Become Monsters - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- UK Government Commits 670 Million ($908.6 Million USD) Over 10 Years to Advance Quantum Computing Capabilities - Quantum Computing Report - June 24th, 2025 [June 24th, 2025]
- Is Quantum Computing (QUBT) Stock a Buy on This Bold Technological Breakthrough? - Yahoo Finance - June 24th, 2025 [June 24th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - Yahoo Finance - June 24th, 2025 [June 24th, 2025]
- UK Commits 500 Million to Quantum Computing Amid Sovereignty And Security Concerns - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Can Investing $10,000 in Quantum Computing (QUBT) Stock Turn Into $1 Million by 2035? - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- SEALSQ, ColibriTD, and Xdigit Announce Plan to Develop a Breakthrough Quantum Computing Based Solution Set to Revolutionize Semiconductor Wafer Yields... - June 24th, 2025 [June 24th, 2025]
- Why Quantum Computing Stock Is Plummeting Today - The Globe and Mail - June 24th, 2025 [June 24th, 2025]
- AdvanThink and Quandela Partner to Explore Quantum AI for Payment Fraud Detection - Quantum Computing Report - June 22nd, 2025 [June 22nd, 2025]
- Fleet Space Advances Quantum-Enhanced Mineral Exploration with New Partnerships - Quantum Computing Report - June 22nd, 2025 [June 22nd, 2025]
- How Will Bitcoin Defend Against Quantum Computing? This Project Just Raised $6M - Decrypt - June 20th, 2025 [June 20th, 2025]
- Why IBM Is the Best Quantum Computing Stock to Buy Right Now - Yahoo Finance - June 20th, 2025 [June 20th, 2025]
- QUBT Stock Is Up 80% In A Month. Whats Happening With Quantum Computing? - Forbes - June 20th, 2025 [June 20th, 2025]
- Microsofts 4D Quantum Codes Promise Reduction in Error Rates, Boost in Prospects of Fault-Tolerant Computing - The Quantum Insider - June 20th, 2025 [June 20th, 2025]
- Escaping dead zones in the "barren plateau" of quantum computing - Earth.com - June 20th, 2025 [June 20th, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 3.5% - Here's What Happened - MarketBeat - June 20th, 2025 [June 20th, 2025]
- Tracking IBM Progress in Quantum Computing and Error Correction - oodaloop.com - June 20th, 2025 [June 20th, 2025]
- Quantum Computing Looks Overvalued And Needs To Deliver Before I Rate It A Buy (QUBT) - Seeking Alpha - June 20th, 2025 [June 20th, 2025]
- Buy the Dip on This Quantum Computing Stock - Schaeffer's Investment Research - June 20th, 2025 [June 20th, 2025]
- Want Exposure to AI, Quantum Computing, and Robotics? This Vanguard ETF Has It All. - The Motley Fool - June 18th, 2025 [June 18th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - Yahoo Finance - June 18th, 2025 [June 18th, 2025]
- D-Wave Puts Down Roots in South Korea in Push for Global Adoption of Quantum Computing - Barron's - June 18th, 2025 [June 18th, 2025]
- Useful quantum computing is already here - The Times - June 18th, 2025 [June 18th, 2025]
- D-Wave, Yonsei University, and Incheon City join forces to expand quantum computing in South Korea - EdTech Innovation Hub - June 18th, 2025 [June 18th, 2025]
- Quantum Computing: All The Right Moves For Takeoff - Seeking Alpha - June 18th, 2025 [June 18th, 2025]
- 3 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - June 18th, 2025 [June 18th, 2025]
- D-Wave Signs MOU with Yonsei University and Incheon for Onsite Advantage2 System and Quantum Collaboration - Quantum Computing Report - June 18th, 2025 [June 18th, 2025]
- Best Quantum Computing Stocks To Add to Your Watchlist - June 17th - MarketBeat - June 18th, 2025 [June 18th, 2025]
- Infleqtion Ships Large Neutral Atom System with Up to 500 Qubits to the Institute for Molecular Science in Japan - Quantum Computing Report - June 18th, 2025 [June 18th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - Yahoo Finance - June 14th, 2025 [June 14th, 2025]
- How to capitalize on the red-hot quantum computing space, according to a veteran investor - CNBC - June 14th, 2025 [June 14th, 2025]
- Quantum Computing Stock Jumped 25% on WednesdayThese Are the Key Price Levels to Watch - Investopedia - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Why Quantum Computing Stock Is Skyrocketing This Week - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- eleQtron and FMD Partner to Advance Scalable Quantum Chip Production in Europe - Quantum Computing Report - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Globe and Mail - June 14th, 2025 [June 14th, 2025]
- Why IONQ, RGTI and QBTS are Worth the Risk in Quantum Computing - TipRanks - June 14th, 2025 [June 14th, 2025]
- If I Could Own Only 1 Quantum Computing Stock, This Would Be It - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Senior Thesis Spotlight: A high-risk, but well-defined idea to advance quantum computing - Princeton University - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - MSN - June 14th, 2025 [June 14th, 2025]
- IonQ to buy Oxford Ionics for $1.08 billion to expand quantum computing research - Reuters - June 14th, 2025 [June 14th, 2025]
- IBM claims 'real world' edge in quantum computing race - Phys.org - June 14th, 2025 [June 14th, 2025]
- IonQ Announces Agreement to Acquire Oxford Ionics, Accelerating Path to Pioneering Breakthroughs in Quantum Computing - Business Wire - June 14th, 2025 [June 14th, 2025]
- Why Quantum Computing Stock Is Skyrocketing This Week - AOL.com - June 14th, 2025 [June 14th, 2025]
- Quantum-Computing Company with Bothell Site Announces Deal That Will 'Set a New Standard - 425business.com - June 14th, 2025 [June 14th, 2025]
- Quantum computing creates the fog and the lighthouse - cio.com - June 14th, 2025 [June 14th, 2025]
- The Quantum Computing Threat to Bitcoin Is Real -- and Coming Fast - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- IBM just took a 'significant' step toward useful quantum computing - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- Is D-Wave Quantum a Better Quantum Computing Stock to Buy Than IonQ? - The Motley Fool - June 10th, 2025 [June 10th, 2025]
- IonQ buys UK quantum startup Oxford Ionics for more than $1 billion - CNBC - June 10th, 2025 [June 10th, 2025]
- The 2025 Tech Power Players in the quantum computing sector - The Boston Globe - June 10th, 2025 [June 10th, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 6/9/2025 - TipRanks - June 10th, 2025 [June 10th, 2025]
- Quantum Computing and its Impact on the Life Science Industry - Inside Global Tech - June 10th, 2025 [June 10th, 2025]
- IBM bets on novel error-correction for scalable quantum computing - Nextgov - June 10th, 2025 [June 10th, 2025]
- Vodafone Partners With ORCA Computing to Model Future Networks in Minutes Using Quantum technology - The Quantum Insider - June 10th, 2025 [June 10th, 2025]
- Vodafone Partners With ORCA Computing to Model Future Networks in Minutes Using Quantum Technology - Business Wire - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - June 10th, 2025 [June 10th, 2025]
- Should You Invest in Quantum Computing Stocks During the TACO Trade? - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- Quantum Computing: Journey from bits to qubits still has far to go - The Indian Express - June 10th, 2025 [June 10th, 2025]
- Quantum Computing Breakthrough: BTQ and QPerfect Join Forces to Create Unhackable Digital Transactions - Stock Titan - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - MSN - June 10th, 2025 [June 10th, 2025]
- British quantum computing start-up spun out of Oxford University snapped up by US rival in 800m deal - MSN - June 10th, 2025 [June 10th, 2025]