Improving quantum computing through quest to ‘build a better qubit’ – IU Newsroom
As society becomes increasingly data driven, theres a growing need for computers that can keep pace with the swelling tide of information as well as computers that can explore topics that arent answerable with traditional computers, such as problems that cant be reduced to yes or no.
With their ability to process large amounts of data at rapid speeds, as well as handle greater levels of ambiguity, quantum computers are seen as a solution. But a quantum computer is only as good as its quantum bits or qubits the individual, short-lived particles that store information for processing. A qubit that lasts longer provides greater computational capacity.
Ph.D. student Joseph Soruco examines part of the ultra-high vacuum chamber in the lab of Ruihua Cheng at the School of Science at IUPUI. Photo by Justin Casterline, Indiana University
This quest to build a better qubit is central to the research of Ruihua Cheng, an associate professor in the Department of Physics in the School of Science at IUPUI. Her work is supported by the Center for Quantum Technologies, a National Science Foundation-supported collaboration between IU, Purdue and Notre Dame. As a part of the center, she and her students are working to understand a special type of molecule known as a spin crossover molecule that could hold significant advantages over other candidates currently used as qubits.
Announced in 2021, the Center for Quantum Technologies is supported by the NSFs Industry-University Cooperative Research program, in which public and private organizations cooperate to advance the work of scientists in a wide range of areas. There are over 80 of these programs in the United States, but the Center for Quantum Technologies is the only center specifically focused on quantum science and technology, according to Ricardo Decca, professor and chair of the Department of Physics at the School of Science at IUPUI, who helped lead the centers establishment in Indiana.
Other members of the Center for Quantum Technologies include the Air Force Research Laboratory, Cummins Inc, Eli Lilly and Co., Hewlett Packard, IBM, Intel, Northrup Grumman and Naval Surface Warfare Center-Crane. Non-academic members who sponsor research projects under the program are granted early access to findings applicable to their organizations.
Corporations are interested in quantum computers due to their potential for complex tasks that arent suited to traditional computers, Cheng said, including modeling complex systems such as human cells; powering artificial intelligence; and protecting personal data with cryptographic algorithms.
Ph.D. student Ashley Dale opens the ultra-high vacuum chamber in the lab. Photo by Justin Casterline, Indiana University
For example, she said, a pharmaceutical company might want to rapidly explore the effect of hundreds of thousands of chemical compounds on a molecular pathway related to a specific disease. A quantum computer could not only provide the computational power to quickly simulate the effect of all of these molecules in a cell, but also be better equipped to handle gray areas in the simulation where a programmer cant provide the exact result of every possible chemical interaction.
A quantum computer has the ability to model ambiguity because quantum bits can be understood to exist in multiple states simultaneously. Scientists can exploit this property to represent more than one outcome at the same time, with different probabilities assigned to each state. The result is a computer that can quickly explore a wide range of potential outcomes.
In February, the Center for Quantum Technologies convened its first meeting of all participating partners to review project proposals. Cheng is a part of two of the seven selected first-round projects, with both leveraging her work on spin crossover molecules, supported under several NSF grants.
Spin is one of the properties of an electron that can be controlled or manipulated in different ways for the purposes of quantum computing, she said. Our work focuses on using electric voltage or electric fields to manipulate the spin in these molecules, which is a novel approach that suggests several potential advantages in quantum computing, including low power consumption and long coherence time.
Coherence refers to the amount of time spin crossover molecules are useful as qubits.
The longer the coherence time, the longer you can preserve information for manipulation, Cheng said.
These times are on the scale of microseconds, milliseconds or longer, she added. Thats 100 to 1,000 times longer than some other materials currently used as qubits. The fact that these time differences are significant despite their relatively short length is a testament to these qubits power compared to semiconductor-based qubits, she said.
The ultra-high vacuum chamber is used as part of experiments that use electric voltages or electric fields to manipulate spin-crossover molecules. Photo by Justin Casterline, Indiana University
To run their experiments, Chengs lab uses spin crossover molecules produced at the Lawrence Berkeley National Laboratory in California, which are synthesized in powder form for safe transport. To manipulate and study the spin in the molecules, Chengs students use a variety of highly specialized machines, including equipment at IUPUIs Integrated Nanosystems Development Institute. She also sends students to Berkeley to conduct experiments on site.
Jared Phillips, a Ph.D. student in Chengs lab, has twice traveled to the facility at Berkeley, as well as collected data remotely. Based on the significance of his research, Phillips was honored for the best students research poster at the American Vacuum Society 68th International Symposium in November.
As a part of the Center for Quantum Technologies, Chengs research does not occur in isolation; she is working with other center colleagues to gain a more comprehensive understanding of these molecules. Collaborating researchers include Jing Liu at the School of Science at IUPUI, who will study the optical properties of the molecules behavior, and Babak Anasori at the School of Engineering and Technology at IUPUI, who provides special 2D materials used as a foundation for the molecules. IU Bloomington, Purdue and Notre Dame researchers are also a part of the projects.
As a collaboration across academia and industry, Decca said the Center for Quantum Technologies is designed to not only facilitate this type of cross-institutional collaboration a strength of academia but also leverage the private sectors focus on rapid innovation. Each month the lead researcher on each project meets with the centers industry partners to incorporate their feedback into the teams work.
Theres also a workforce development aspect to the CQT, Decca said, noting that students who participate in research projects funded through the center graduate with high-tech skills tailored to the interest of the participating partners. Theres high potential for students to jump straight into these industries upon graduation.
In addition to monthly meetings, a full meeting of the centers partners occurs twice a year. The next of these meetings, which are open to the public, will take place on the IUPUI campus in October.
More here:
Improving quantum computing through quest to 'build a better qubit' - IU Newsroom
- Forget Rigetti Computing: This Quantum Veteran With Real Cash Flow Is the Smarter LongTerm Bet - The Motley Fool - January 30th, 2026 [January 30th, 2026]
- What the IBM Earnings Call Revealed About the Future of Quantum Computing - inc.com - January 30th, 2026 [January 30th, 2026]
- Quantum Computing in the Cloud: What it Means for Businesses - The Quantum Insider - January 30th, 2026 [January 30th, 2026]
- IBM Showcases New Vision for Quantum. How Nvidia and AMD Fit in the Computing Future. - Barron's - January 30th, 2026 [January 30th, 2026]
- 3 Quantum Computing Stocks with Potential to Beat the Market 1/30/2026 - TipRanks - January 30th, 2026 [January 30th, 2026]
- CP Group Secures Global Headquarters Relocation of Quantum Computing Pioneer D-Wave to Its Boca Raton Innovation Campus (BRiC) - Yahoo Finance - January 30th, 2026 [January 30th, 2026]
- Leading Companies Reinforcing Their Presence in the Quantum Computing Market for Energy and Utilities - openPR.com - January 30th, 2026 [January 30th, 2026]
- Sovereign Wealth Fund Leads Quantum Computing Funding Round - Sovereign Wealth Fund Institute | SWFI - January 30th, 2026 [January 30th, 2026]
- IonQ to Acquire SkyWater Technology, Creating the Only Vertically Integrated Full-Stack Quantum Platform Company - IonQ Quantum Computing - January 28th, 2026 [January 28th, 2026]
- Forget Quantum Computing Inc. Stock: Buy This AIFirst Tech Titan Hiding in Plain Sight - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Prediction: This Quantum Computing Stock Will Skyrocket in 2026 - Yahoo Finance - January 28th, 2026 [January 28th, 2026]
- Cyber Insights 2026: Quantum Computing and the Potential Synergy With Advanced AI - SecurityWeek - January 28th, 2026 [January 28th, 2026]
- IonQ Completes Acquisition of Skyloom, Expanding Quantum Networking and Secure Communications Capabilities - IonQ Quantum Computing - January 28th, 2026 [January 28th, 2026]
- D-Wave Updates Annealing and Gate-Model Quantum Computing Roadmap - The Quantum Insider - January 28th, 2026 [January 28th, 2026]
- Giving "Drunk" Atoms a Clear Voice in Quantum Computing - ScienceBlog.com - January 28th, 2026 [January 28th, 2026]
- Advances MBQC With Binomial Codes And Cavity-Qed For Quantum Computing - Quantum Zeitgeist - January 28th, 2026 [January 28th, 2026]
- Quantum computing is waiting for its own "NVIDIA". - 36 - January 28th, 2026 [January 28th, 2026]
- IonQ to spend $1.8B on chipmaker SkyWater to advance US quantum computing - Manufacturing Dive - January 28th, 2026 [January 28th, 2026]
- Assessing Quantum Computing (QUBT) Valuation After Revenue Growth Hopes And Luminar Semiconductor Asset Deal - simplywall.st - January 28th, 2026 [January 28th, 2026]
- 3 Unpleasant Truths Investors in IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Will Have to Face in 2026 - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Silicon Dot Quantum Computing, Billions of Qubits, and Real-World Applications with Diraq - The Quantum Insider - January 28th, 2026 [January 28th, 2026]
- 3 Unpleasant Truths Investors in IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Will Have to Face in 2026 - The Globe and Mail - January 28th, 2026 [January 28th, 2026]
- News: How Quantum Computing Will Redefine Data Security | Asamaka Industries Ltd - A3 Association for Advancing Automation - January 28th, 2026 [January 28th, 2026]
- Forget Quantum Computing Stocks: This Unavoidable Platform Is Where Big Customers Are Actually Going - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Forget Quantum Computing Stocks: This Unavoidable Platform Is Where Big Customers Are Actually Going - Nasdaq - January 28th, 2026 [January 28th, 2026]
- Forget Quantum Computing Inc. Stock: Buy This AIFirst Tech Titan Hiding in Plain Sight - Nasdaq - January 28th, 2026 [January 28th, 2026]
- The Simple Reason Why I Won't Buy Quantum Computing Stocks in 2026 - The Motley Fool - January 24th, 2026 [January 24th, 2026]
- Massive News: D-Wave Just Changed Its Quantum Computing Strategy - Nasdaq - January 24th, 2026 [January 24th, 2026]
- Forget Quantum Computing Stock: Buy This DividendPaying Quantum Pioneer, And Never Sell - Yahoo Finance - January 24th, 2026 [January 24th, 2026]
- New Insight Into LightMatter Thermalization Could Advance Neutral-Atom Quantum Computing - The Quantum Insider - January 24th, 2026 [January 24th, 2026]
- ZenaTech Advances Proprietary Quantum Hardware Platform for Defense and Government Sectors - Quantum Computing Report - January 24th, 2026 [January 24th, 2026]
- Forget Quantum Computing Stock: Buy This DividendPaying Quantum Pioneer, And Never Sell - The Motley Fool - January 24th, 2026 [January 24th, 2026]
- Podcast with Zach Yerushalmi, CEO of Elevate Quantum and leader of the U.S. Quantum Tech Hub - Quantum Computing Report - January 24th, 2026 [January 24th, 2026]
- Coinbase Creates Advisory Board to Study Quantum Computing Risks to Bitcoin - Yahoo Finance - January 24th, 2026 [January 24th, 2026]
- Prediction: Quantum Computing, IonQ, Rigetti, and D-Wave Will Crash In 2026. Here's What You Should Buy Instead - The Motley Fool - January 24th, 2026 [January 24th, 2026]
- Rigetti vs. D-Wave: Which Quantum Computing Stock Is the Better Pick? - Zacks Investment Research - January 24th, 2026 [January 24th, 2026]
- University At Buffalo Study Reveals Delayed Thermalization For Quantum Computing - Quantum Zeitgeist - January 24th, 2026 [January 24th, 2026]
- Massive News: D-Wave Just Changed Its Quantum Computing Strategy - The Motley Fool - January 24th, 2026 [January 24th, 2026]
- ZenaTech Progresses its Proprietary Quantum Computing Hardware Platform for Defense, Homeland Security and Government Applications - Stocktwits - January 24th, 2026 [January 24th, 2026]
- A Once-in-a-Decade Investment Opportunity: 3 Quantum Computing Stocks to Buy and Hold - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Is Already Hitting BitcoinHeres How - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Investors Are Overlooking a Monumental Headwind With Quantum Computing Stocks IonQ and Rigetti Computing - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- New insight into light-matter thermalization could advance neutral-atom quantum computing - Phys.org - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Stocks: Separating Hype From Reality in 2026 - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Coinbase launches expert board to assess quantum computing threat to crypto - Fortune - January 22nd, 2026 [January 22nd, 2026]
- How can we scale quantum computing in the most energy-efficient way? - The World Economic Forum - January 22nd, 2026 [January 22nd, 2026]
- Does Quantum Computing (QUBT) Have the Scale to Turn Photonics Deals into Durable Revenue? - simplywall.st - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Is Already Hitting BitcoinHeres How - BeInCrypto - January 22nd, 2026 [January 22nd, 2026]
- 2 Top Quantum Computing Stocks to Buy in January - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Quantum computing firm dangles $22,500 Bitcoin prize all you have to do is uncover a private key hidden inside a quantum-optimized problem - Tom's... - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Achieves Database Optimisation with Sub-5 Second Runtime Performance - Quantum Zeitgeist - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing (NASDAQ:QUBT) Trading Down 6.2% - Here's What Happened - MarketBeat - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Stocks Surge Over 1000% in Three Years - Intellectia AI - January 22nd, 2026 [January 22nd, 2026]
- Could IonQ Become the Nvidia of Quantum Computing? - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Horizon Quantum Explores Faster Ways to Fault-Tolerant Quantum Computing with Alice & Bob - Business Wire - January 22nd, 2026 [January 22nd, 2026]
- 3 Key Ways D-Wave Is Developing an Advantage in Quantum Computing - MarketBeat - January 22nd, 2026 [January 22nd, 2026]
- 2 Top Quantum Computing Stocks to Buy in January - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- IonQ Achieves 99.99% Accuracy in Quantum Computing, Aiming to Build Ecosystem - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - Yahoo Finance - January 20th, 2026 [January 20th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- What Is the Best Quantum Computing Stock to Own for the Next 5 Years? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - Nasdaq - January 20th, 2026 [January 20th, 2026]
- Alphabet and Microsoft Achieve Quantum Computing Breakthroughs with Cash Flows Over $24 Billion - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Quantum Computing Advances Strongly Correlated Systems with Handover-Iterative VQE and SHCI Convergence - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- NVIDIAs Strategy Is Shaping The Future Of Quantum Computing - Forbes - January 20th, 2026 [January 20th, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Barchart.com - January 20th, 2026 [January 20th, 2026]
- Summit on quantum computing tomorrow - Times of India - January 20th, 2026 [January 20th, 2026]
- Jefferies Analyst Dumps Bitcoin Over Quantum Computing Fears, Buys Gold - Bitcoin Magazine - January 18th, 2026 [January 18th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 18th, 2026 [January 18th, 2026]
- Smart Investor: Bank Earnings, Index ETFs, and Quantum Computing Stocks - morningstar.com - January 18th, 2026 [January 18th, 2026]
- Why Quantum Computing Stock Plummeted 38% Last Year but Is Soaring in 2026 - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - Nasdaq - January 18th, 2026 [January 18th, 2026]
- Opinion: Will Quantum Computing Be a Quantum Leap for Higher Ed? - GovTech - January 18th, 2026 [January 18th, 2026]
- Fear that quantum computing is on the cusp of cracking cryptocurrency's encryption spurs a global investment firm to remove Bitcoin from... - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- Alphabet Invests in Quantum Computing with Capex of $93 Billion - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Neutral-atom arrays, a rapidly emerging quantum computing platform, get a boost from researchers - Phys.org - January 18th, 2026 [January 18th, 2026]