Looking to the future of quantum cloud computing – Siliconrepublic.com – Siliconrepublic.com
Trinity College Dublins Dan Kilper and University of Arizonas Saikat Guha discuss the quantum cloud and how it could be achieved.
Quantum computing has been receiving a lot of attention in recent years as several web-scale providers race towards so-called quantum advantage the point at which a quantum computer is able to exceed the computing abilities of classical computing.
Large public sector investments worldwide have fuelled research activity within the academic community. The first claim of quantum advantage emerged in 2019 when Google, NASA and Oak Ridge National Laboratory (ORNL) demonstrated a computation that the quantum computer completed in 200 seconds and that the ORNL supercomputer verified up to the point of quantum advantage, estimated to require 10,000 years to complete to the end.
Roadmaps that take quantum computers even further into this regime are advancing steadily. IBM has made quantum computers available for online access for many years now and recently Amazon and Microsoft started cloud services to provide access for users to several different quantum computing platforms. So, what comes next?
The step beyond access to a single quantum computer is access to a network of quantum computers. We are starting to see this emerge from the web or cloud-based quantum computers offered by cloud providers effectively quantum computing as a service, sometimes referred to as cloud-based quantum computing.
This consists of quantum computers connected by classical networks and exchanging classical information in the form of bits, or digital ones and zeros. When quantum computers are connected in this way, they each can perform separate quantum computations and return the classical results that the user is looking for.
It turns out that with quantum computers, there are other possibilities. Quantum computers perform operations on quantum bits, or qubits. It is possible for two quantum computers to exchange information in the form of qubits instead of classical bits. We refer to networks that transport qubits as quantum networks. If we can connect two or more quantum computers over a quantum network, then they will be able to combine their computations such that they might behave as a single larger quantum computer.
Quantum computing distributed over quantum networks thus has the potential to significantly enhance the computing power of quantum computers. In fact, if we had quantum networks today, many believe that we could immediately build large quantum computers far into the advantage regime simply by connecting many instances of todays quantum computers over a quantum network. With quantum networks built, and interconnected at various scales, we could build a quantum internet. And at the heart of this quantum internet, one would expect to find quantum computing clouds.
At present, scientists and engineers are still working on understanding how to construct such a quantum computing cloud. The key to quantum computing power is the number of qubits in the computer. These are typically micro-circuits or ions kept at cryogenic temperatures, near minus 273 degrees Celsius.
While these machines have been growing steadily in size, it is expected that they will eventually reach a practical size limit and therefore further computing power is likely to come from network connections across quantum computers within the data centre, very much like todays current classical computing data centres. Instead of racks of servers, one would expect rows of cryostats.
Quantum computing distributed over quantum networks has the potential to significantly enhance the computing power of quantum computers
Once we start imagining a quantum internet, we quickly realise that there are many software structures that we use in the classical internet that might need some type of analogue in the quantum internet.
Starting with the computers, we will need quantum operating systems and computing languages. This is complicated by the fact that quantum computers are still limited in size and not engineered to run operating systems and programming the way that we do in classical computers. Nevertheless, based on our understanding of how a quantum computer works, researchers have developed operating systems and programming languages that might be used once a quantum computer of sufficient power and functionality is able to run them.
Cloud computing and networking rely on other software technologies such as hypervisors, which manage how a computer is divided up into several virtual machines, and routing protocols to send data over the network. In fact, research is underway to develop each of these for the quantum internet. With quantum computer operating systems still under development, it is difficult to develop a hypervisor to run multiple operating systems on the same quantum computer as a classical hypervisor would.
By understanding the physical architecture of quantum computers, however, one can start to imagine how it might be organised to support different subsets of qubits to effectively run as separate quantum computers, potentially using different physical qubit technologies and employing different sub-architectures, within a single machine.
One important difference between quantum and classical computers and networks is that quantum computers can make use of classical computers to perform many of their functions. In fact, a quantum computer in itself is a tremendous feat of classical system engineering with many complex controls to set up and operate the quantum computations. This is a very different starting point from classical computers.
The same can be said for quantum networks, which have the classical internet to provide control functions to manage the network operations. It is likely that we will rely on classical computers and networks to operate their quantum analogues for some time. Just as a computer motherboard has many other types of electronics other than the microprocessor chip, it is likely that quantum computers will continue to rely on classical processors to do much of the mundane work behind their operation.
With the advent of the quantum internet, it is presumable that a quantum-signalling-equipped control plane might be able to support certain quantum network functions even more efficiently.
When talking about quantum computers and networks, scientists often refer to fault-tolerant operations. Fault tolerance is a particularly important step toward realising quantum cloud computing. Without fault tolerance, quantum operations are essentially single-shot computations that are initialised and then run to a stopping point that is limited by the accumulation of errors due to quantum memory lifetimes expiring as well as the noise that enters the system with each step in the computation.
Fault tolerance would allow for quantum operations to continue indefinitely with each result of a computation feeding the next. This is essential, for example, to run a computer operating system.
In the case of networks, loss and noise limit the distance that qubits can be transported on the order of 100km today. Fault tolerance through operations such as quantum error correction would allow for quantum networks to extend around the world. This is quite difficult for quantum networks because, unlike classical networks, quantum signals cannot be amplified.
We use amplifiers everywhere in classical networks to boost signals that are reduced due to losses, for example, from traveling down an optical fibre. If we boost a qubit signal with an optical amplifier, we would destroy its quantum properties. Instead, we need to build quantum repeaters to overcome signal losses and noise.
Together we have our sights set on realising the networks that will make up the quantum internet
If we can connect two fault-tolerant quantum computers at a distance that is less than the loss limits for the qubits, then the quantum error correction capabilities in the computers can in principle recover the quantum signal. If we build a chain of such quantum computers each passing quantum information to the next, then we can achieve the fault-tolerant quantum network that we need. This chain of computers linking together is reminiscent of the early classical internet when computers were used to route packets through the network. Today we use packet routers instead.
If you look under the hood of a packet router, it is composed of many powerful microprocessors that have replaced the computer routers and are much more efficient at the specific routing tasks involved. Thus, one might imagine a quantum analogue to the packet router, which would be a small purpose-built quantum computer designed for recovering and transmitting qubits through the network. These are what we refer to today as quantum repeaters, and with these quantum repeaters we could build a global quantum internet.
Currently there is much work underway to realise a fault-tolerant quantum repeater. Recently a team in the NSF Center for Quantum Networks (CQN)achieved an important milestone in that they were able to use a quantum memory to transmit a qubit beyond its usual loss limit. This is a building block for a quantum repeater. The SFI Connect Centre in Ireland is also working on classical network control systems that can be used to operate a network of such repeaters.
Together we have our sights set on realising the networks that will make up the quantum internet.
By Dan Kilper and Saikat Guha
Dan Kilper is professor of future communication networks at Trinity College Dublin and director of the Science Foundation Ireland (SFI) Connect research centre.
Saikat Guha is director of the NSF-ERC Center for Quantum Networks and professor of optical sciences, electrical and computer engineering, and applied mathematics at the University of Arizona.
See the original post here:
Looking to the future of quantum cloud computing - Siliconrepublic.com - Siliconrepublic.com
- Quantum Computing Can Be Brought to the Masses, if It Is Decentralized - CCN.com - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Specialist IonQ (IONQ) May Have Reached The End Of The Road - Barchart - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - Fortune - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Sink as Nvidia CEO Says Tech Is 15 to 30 Years Away - Investopedia - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Stocks Rigetti Computing, Quantum Computing, and D-Wave Computing All Plunged Today - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Crashed -- Here's Why - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jen-Hsun Huang's simple reminder that useful quantum computing is a long way off has somehow caused industry stocks to plummet - PC Gamer - January 9th, 2025 [January 9th, 2025]
- How Quantum Computing Could Advance One Health - Impakter - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks are having a rough start to 2025: IonQ, D-Wave, Rigetti tank after Nvidia CEO predicts 20-year horizon - Fast Company - January 9th, 2025 [January 9th, 2025]
- Quantum Computing, Inc. Announces Private Placement of Common Stock for Proceeds of $100 Million - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- 2025 will see huge advances in quantum computing. So what is a quantum chip and how does it work? - The Conversation - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - AOL - January 9th, 2025 [January 9th, 2025]
- Collaboration to explore the use of graphene technology in quantum computing - The Manufacturer - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks tumble after Nvidia boss Jensen Huang says the tech is still 20 years away - Markets Insider - January 9th, 2025 [January 9th, 2025]
- Want to Buy a Quantum Computing Stock in 2025? You Might Consider This Quantum Computing ETF. - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Ride the Quantum Computing Wave with These 2 Stocks: RGTI, QBTS - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- Shaping the Future of Quantum Computing in the United Arab Emirates (UAE) - Quantum Computing Report - January 9th, 2025 [January 9th, 2025]
- How Nvidia CEO Jensen Huang's one sentence wiped out $8 billion in market cap of quantum computing compan - The Times of India - January 9th, 2025 [January 9th, 2025]
- Will This Quantum Computing Stock Be a Must-Own in 2025? - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum-computing stocks tumble on Nvidia CEOs comment that theyre decades away from being very useful - Sherwood News - January 9th, 2025 [January 9th, 2025]
- Analyzing Quantum Computing Has Been The Most Challenging Project In My Career (NASDAQ:QUBT) - Seeking Alpha - January 3rd, 2025 [January 3rd, 2025]
- Norma and Mabel Quantum Partner to Launch Integrated Quantum Computing System in Korea - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- How Microsoft and Partners are Shaping the Future of Quantum Computing - The Quantum Insider - January 3rd, 2025 [January 3rd, 2025]
- One Quantum Computing ETF to Buy Hand Over Fist as Googles Willow Supercharges the Market - Barchart - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram Inc. Develops Semiconductor Quantum Dot Hole Spin Qubit Technology, Advancing the Frontiers of Quantum Computing - Yahoo Finance - January 3rd, 2025 [January 3rd, 2025]
- Quantum Applications in the Automotive Industry - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer Warns 'Day Is Not Near Enough To Justify The Current Valuations' Of Quantum Computing, Nuclear Power Stocks - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram's Stock Surges 31% on Quantum Computing Breakthrough: What This Means for the Future of Tech - The Africa Logistics - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Stocks Like Rigetti Computing Are Soaring And This ETF Lets Investors Participate In The Boom Story - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- Future Industry Growth Of Commercial Quantum Computing - openPR - January 3rd, 2025 [January 3rd, 2025]
- GCAN to Explore Strategic Alternatives in Artificial Intelligence and Quantum Computing - GlobeNewswire - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer talks being cautious with nuclear power and quantum computing stocks - MSN - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - December 27th, 2024 [December 27th, 2024]
- Should You Buy Quantum Computing Stocks in 2025? - The Motley Fool - December 27th, 2024 [December 27th, 2024]
- Rigetti Stock Doubles in Days: Here's the Quantum Computing Stock's Next Target - Money Morning - December 27th, 2024 [December 27th, 2024]
- 3 Quantum Computing Stocks Surging to End the Year - Schaeffers Research - December 27th, 2024 [December 27th, 2024]
- Quantum Computing Advances in 2024 Put Security In Spotlight - Dark Reading - December 27th, 2024 [December 27th, 2024]
- Daejeon City Partners with Norma and National Nanofab Center to Advance Quantum Computing - Quantum Computing Report - December 27th, 2024 [December 27th, 2024]
- Why IonQ Is the Best Quantum Computing Stock to Buy Right Now - The Motley Fool - December 27th, 2024 [December 27th, 2024]
- Singapore Startup's Quantum Controller Aimed at Bridging the Gap Between Traditional and Quantum Computing - The Quantum Insider - December 27th, 2024 [December 27th, 2024]
- 2 Quantum Computing Stocks Poised for Big Gains: Get Their Price Targets Here - Money Morning - December 27th, 2024 [December 27th, 2024]
- SCIENCE NOTEBOOK | More Efficient Quantum Computing, Aggressive Lowering of BP of Type 2 Diabetes Patients, and Heat-Related Mortality Due to Climate... - December 27th, 2024 [December 27th, 2024]
- Rigetti Computing leads quantum stocks higher to end week - Seeking Alpha - December 27th, 2024 [December 27th, 2024]
- Quantum Computing Stock QUBT Has More Than Doubled While Bitcoin Has Dropped Since Google's 'Willow' Reveal: What Does This Mean? - Benzinga - December 27th, 2024 [December 27th, 2024]
- Three Ways Nvidia (NVDA) Benefits From The Quantum Computing Revolution - Yahoo Finance - December 27th, 2024 [December 27th, 2024]
- Quantum Stocks: Avoid Rigetti Computing And Buy IonQ Instead (NYSE:IONQ) - Seeking Alpha - December 27th, 2024 [December 27th, 2024]
- SEALSQ Secures $60.0 Million in Total Funding to Advance Post-Quantum Cryptography Semiconductor Technology - Quantum Computing Report - December 27th, 2024 [December 27th, 2024]
- Quantum Computing Shares Soar! Investors Eye the Future. - Jomfruland.net - December 27th, 2024 [December 27th, 2024]
- What Googles quantum computing breakthrough Willow means for the future of bitcoin and other cryptos - CNBC - December 22nd, 2024 [December 22nd, 2024]
- Quantum computing will fortify Bitcoin signatures: Adam Back - Cointelegraph - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing: The New AI? A Look at the Rapidly Expanding Market and Top Stocks For 2025 - Benzinga - December 22nd, 2024 [December 22nd, 2024]
- D-Wave Quantum (QBTS) Riding High on the Quantum Computing Tide - TipRanks - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing, BlackBerry And Lucid Group Are Among Top Mid Cap Gainers Last Week (December 16-20): Are The Others In Your Portfolio? - Benzinga - December 22nd, 2024 [December 22nd, 2024]
- Quantum computing stocks are having a great 2024: QUBT, D-Wave, Rigetti soar on enthusiasm for the cutting-edge tech - Fast Company - December 22nd, 2024 [December 22nd, 2024]
- IBMs stock could ride the coattails of the quantum-computing rally. Heres how. - MarketWatch - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Stock Skyrockets Further on NASA Contract - Investopedia - December 22nd, 2024 [December 22nd, 2024]
- Is the Quantum Computing Stock Rally Over So Soon? - TipRanks - December 22nd, 2024 [December 22nd, 2024]
- Quantum computing stocks mixed as eye-popping rally slows a bit - Seeking Alpha - December 22nd, 2024 [December 22nd, 2024]
- Bitcoin would need over 300 days of downtime to adequately defend itself from the 'imminent' threat of quantum computing, research finds - Fortune - December 22nd, 2024 [December 22nd, 2024]
- Rigetti Stock Investors: Here's What You Need to Know About This Quantum Computing Stock - The Motley Fool - December 22nd, 2024 [December 22nd, 2024]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2025 - Yahoo Finance - December 22nd, 2024 [December 22nd, 2024]
- New day dawns for quantum computing in the UK - physicsworld.com - December 22nd, 2024 [December 22nd, 2024]
- What's Going On With Quantum Computing (QUBT) Stock? - Benzinga - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Stock Investors: Here's What You Need to Know - The Motley Fool - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Is Coming And Lawyers Arent Ready - Above the Law - December 22nd, 2024 [December 22nd, 2024]
- 2024: The Year of Quantum Computing Roadmaps - Quantum Computing Report - December 22nd, 2024 [December 22nd, 2024]
- The Future is Here. Unlocking the Mysteries of Quantum Computing. - Qhubo - December 22nd, 2024 [December 22nd, 2024]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2025 - The Motley Fool - December 22nd, 2024 [December 22nd, 2024]
- Quantum walk computing unlocks new potential in quantum science and technology - MSN - December 22nd, 2024 [December 22nd, 2024]
- Investing in the Future of Quantum Computing: Stocks to Watch Now - MarketBeat - December 22nd, 2024 [December 22nd, 2024]
- Quantum Computing Inches Closer to Reality After Another Google Breakthrough - The New York Times - December 14th, 2024 [December 14th, 2024]
- How Google's Willow is A Quantum Leap in Computing Tech - Technology Magazine - December 14th, 2024 [December 14th, 2024]
- Google claims quantum computing milestone but the tech can't solve real-world problems yet - CNBC - December 14th, 2024 [December 14th, 2024]
- Ten septillion years: Google makes another quantum computing breakthrough - Semafor - December 14th, 2024 [December 14th, 2024]
- BMW Group and Airbus reveal winners of Quantum Computing Challenge - BMW Press - December 14th, 2024 [December 14th, 2024]
- The Race for Fault-Tolerant Quantum Computing: Unveiling the Next Leap | by Disruptive Concepts | Dec, 2024 - Medium - December 14th, 2024 [December 14th, 2024]
- Can the Rally in Alphabet (GOOGL) Stock Continue with New Quantum Computing Chip? - Yahoo Finance - December 14th, 2024 [December 14th, 2024]
- Unlocking the Full Power of Quantum Computing With a Revolutionary Superconducting Processor - SciTechDaily - December 14th, 2024 [December 14th, 2024]
- What Googles Willow chip means for the future of quantum computing, AI, and encryption - The Indian Express - December 14th, 2024 [December 14th, 2024]
- Think AI Is Baffling? Heres How to Pretend You Understand Quantum Computing. - Barron's - December 14th, 2024 [December 14th, 2024]