Quantum computing just might save the planet – McKinsey
The emerging technology of quantum computingcould revolutionize the fight against climate change, transforming the economics of decarbonization and becoming a major factor in limiting global warming to the target temperature of 1.5C (see sidebar What is quantum computing?).
Even though the technology is in the early stages of developmentexperts estimate the first generation of fault-tolerant quantum computing will arrive in the second half of this decadebreakthroughs are accelerating, investment dollars are pouring in, and start-ups are proliferating. Major tech companies have already developed small, so-called noisy intermediate-scale quantum (NISQ) machines, though these arent capable of performing the type of calculations that fully capable quantum computers are expected to perform.
Countries and corporates set ambitious new targets for reducing emissions at the 2021 United Nations Climate Change Conference (COP26). Those goals, if fully met, would represent an extraordinary annual investment of $4 trillion by 2030, the largest reallocation of capital in human history. But the measures would only reduce warming to between 1.7C and 1.8C by 2050, far short of the 1.5C level believed necessary to avoid catastrophic, runaway climate change.
Meeting the goal of net-zero emissions that countries and some industries have committed to wont be possible without huge advances in climate technology that arent achievable today. Even the most powerful supercomputers available now are not able to solve some of these problems. Quantum computing could be a game changer in those areas. In all, we think quantum computing could help develop climate technologies able to abate carbon on the order of 7 gigatons a year of additional CO2 impact by 2035, with the potential to bring the world in line with the 1.5C target.
Quantum computing could help reduce emissions in some of the most challenging or emissions-intensive areas, such as agriculture or direct-air capture, and could accelerate improvements in technologies required at great scale, such as solar panels or batteries. This article offers a look at some of the breakthroughs the technology could permit and attempts to quantify the impact of leveraging quantum-computer technology that are expected become available this decade.
Quantum computing could bring about step changes throughout the economy that would have a huge impact on carbon abatement and carbon removal, including by helping to solve persistent sustainability problems such as curbing methane produced by agriculture, making the production of cement emissions-free, improving electric batteries for vehicles, developing significantly better renewable solar technology, finding a faster way to bring down the cost of hydrogen to make it a viable alternative to fossil fuels, and using green ammonia as a fuel and a fertilizer.
Addressing the five areas designated in the Climate Math Reportas key for decarbonization, we have identified quantum-computing use cases that can pave the way to a net-zero economy. We project that by 2035 the use cases listed below could make it possible to eliminate more than 7 gigatons of CO2 equivalent (CO2e) from the atmosphere a year, compared with the current trajectory, or in aggregate more than 150 gigatons over the next 30 years (Exhibit 1).
Exhibit 1
Batteries are a critical element of achieving zero-carbon electrification. They are required to reduce CO2 emissions from transportation and to obtain grid-scale energy storage for intermittent energy sources such as solar cells or wind.
Improving the energy density of lithium-ion (Li-ion) batteries enables applications in electric vehicles and energy storage at an affordable cost. Over the past ten years, however, innovation has stalledbattery energy density improved 50 percent between 2011 and 2016, but only 25 percent between 2016 and 2020, and is expected to improve by just 17 percent between 2020 and 2025.
Recent research has shown that quantum computing will be able to simulate the chemistry of batteries in ways that cant be achieved now. Quantum computing could allow breakthroughs by providing a better understanding of electrolyte complex formation, by helping to find a replacement material for cathode/anode with the same properties and/or by eliminating the battery separator.
As a result, we could create batteries with 50 percent higher energy density for use in heavy-goods electric vehicles, which could substantially bring forward their economic use. The carbon benefits to passenger EVs wouldnt be huge, as these vehicles are expected to reach cost parity in many countries before the first generation of quantum computers is online, but consumers might still enjoy cost savings.
In addition, higher-density energy batteries can serve as a grid-scale storage solution. The impact on the worlds grids could be transformative. Halving the cost of grid-scale storage could enable a step change in the use of solar power, which is becoming economically competitive but is challenged by its generation profile. Our modeling suggests that halving the cost of solar panels could increase their use by 25 percent in Europe by 2050 but halving both solar and batteries might increase solar use by 60 percent (Exhibit 2). Geographies without such a high carbon price will see even greater impacts.
Exhibit 2
Through the combination of use cases described above, improved batteries could bring about an additional reduction in carbon dioxide emissions of 1.4 gigatons by 2035.
Many parts of the industry produce emissions that are either extremely expensive or logistically challenging to abate.
Cement is a case in point. During calcination in the kiln for the process of making clinker, a powder used to make cement, CO2 is released from raw materials. This process accounts for approximately two-thirds of cement emissions.
Alternative cement-binding materials (or clinkers) can eliminate these emissions, but theres currently no mature alternative clinker that can significantly reduce emissions at an affordable cost.
There are many possible permutations for such a product, but testing by trial and error is time-consuming and costly. Quantum computing can help to simulate theoretical material combinations to find one that overcomes todays challengesdurability, availability of raw materials and efflorescence (in the case of alkali-activated binders). This would have an estimated additional impact of 1 gigaton a year by 2035.
Solar cells will be one of the key electricity-generation sources in a net-zero economy. But even though they are getting cheaper, they still are far from their theoretical maximum efficiency.
Todays solar cells rely on crystalline silicon and have an efficiency on the order of 20 percent. Solar cells based on perovskite crystal structures, which have a theoretical efficiency of up to 40 percent, could be a better alternative. They present challenges, however, because they lack long-term stability and could, in some varieties, be more toxic. Furthermore, the technology has not been mass produced yet.
Quantum computing could help tackle these challenges by allowing for precise simulation of perovskite structures in all combinations using different base atoms and doping, thereby identifying higher efficiency, higher durability, and nontoxic solutions. If the theoretical efficiency increase can be reached, the levelized cost of electricity (LCOE) would decrease by 50 percent.
By simulating the impact of cheaper and more efficient quantum-enabled solar panels, we see a significant increase in use in areas with lower carbon prices (China, for example). This is also true of countries in Europe with high irradiance (Spain, Greece) or poor conditions for wind energy (Hungary). The impact is magnified when combined with cheap battery storage, as discussed above.
This technology could abate an additional 0.4 gigatons of CO2 emissions by 2035.
Hydrogen is widely considered to be a viable replacement for fossil fuels in many parts of the economy, especially in industry where high temperature is needed and electrification isnt possible or sufficient, or where hydrogen is needed as a feedstock, such as steelmaking or ethylene production.
Before the 2022 gas price spikes, green hydrogen was about 60 percent more expensive than natural gas. But improving electrolysis could significantly decrease the cost of hydrogen.
Polymer electrolyte membrane (PEM) electrolyzers split water and are one way to make green hydrogen. They have improved in recent times but still face two major challenges.
Quantum computing can help model the energy state of pulse electrolysis to optimize catalyst usage, which would increase efficiency. Quantum computing could also model the chemical composition of catalysts and membranes to ensure the most efficient interactions. And it could push the efficiency of the electrolysis process up to 100 percent and reduce the cost of hydrogen by 35 percent. If combined with cheaper solar cells discovered by quantum computing (discussed above), the cost of hydrogen could be reduced by 60 percent (Exhibit 3).
Exhibit 3
Increased hydrogen use as a result of these improvements could reduce CO2 emissions by an additional 1.1 gigatons by 2035.
Ammonia is best known as a fertilizer, but could also be used as fuel, potentially making it one of the best decarbonization solutions for the worlds ships. Today, it represents 2 percent of total global final energy consumption.
For the moment, ammonia is made through the energy-intensive Haber-Bosch process using natural gas. There are several options for creating green ammonia, but they rely on similar processes. For example, green hydrogen can be used as a feedstock, or the carbon dioxide emissions that are caused by the process can be captured and stored.
However, there are other potential approaches, such as nitrogenase bioelectrocatalysis, which is how nitrogen fixation works naturally when plants take nitrogen gas directly from the air and nitrogenase enzymes catalyze its conversion into ammonia. This method is attractive because it can be done at room temperature and at 1 bar pressure, compared with 500C at high pressure using Haber-Bosch, which consumes large amounts of energy (in the form of natural gas) (Exhibit 4).
Exhibit 4
Innovation has reached a stage where it might be possible to replicate nitrogen fixation artificially, but only if we can overcome challenges such as enzyme stability, oxygen sensitivity, and low rates of ammonia production by nitrogenase. The concept works in the lab but not at scale.
Quantum computing can help simulate the process of enhancing the stability of the enzyme, protecting it from oxygen and improving the rate of ammonia production by nitrogenase. That would result in a 67 percent cost reduction over todays green ammonia produced through electrolysis, which would make green ammonia even cheaper than traditionally produced ammonia. Such a cost reduction could not only lessen the CO2 impacts of the production of ammonia for agricultural use but could also bring forward the breakeven for ammonia in shippingwhere it is expected to be a major decarbonization optionforward by ten years.
Using quantum computing to facilitate cheaper green ammonia as a shipping fuel could abate an additional CO2 by 0.4 gigatons by 2035.
Carbon capture is required to achieve net zero. Both types of carbon capturepoint source and directcould be aided by quantum computing.
Point-source carbon capture allows CO2 to be captured directly from industrial sources such as a cement or steel blast furnace. But the vast majority of CO2 capture is too expensive to be viable for now, mainly because it is energy intense.
One possible solution: novel solvents, such as water-lean and multiphase solvents, which could offer lower-energy requirements, but it is difficult to predict the properties of the potential material at a molecular level.
Quantum computing promises to enable more accurate modeling of molecular structure to design new, effective solvents for a range of CO2 sources, which could reduce the cost of the process by 30 to 50 percent.
We believe this has significant potential to decarbonize industrial processes, which could lead to additional decarbonization of up to 1.5 gigatons a year, including cement. If the cement clinker approach described above is successful, this would still have an effect of 0.5 gigatons a year, due to fuel emissions. In addition, alternative clinkers may not be available in some regions.
Direct-air capture, which involves sucking CO2 from the air, is a way to address carbon removals. While the Intergovernmental Panel on Climate Change says this approach is required to achieve net zero, it is very expensive (ranging from $250 to $600 per ton a day today) and even more energy intensive than point-source capture.
Adsorbents are best suited for effective direct-air capture and novel approaches, such as metal organic frameworks, or MOFs, have the potential to greatly reduce the energy requirements and the capital cost of the infrastructure. MOFs act like a giant spongeas little as a gram can have a surface area larger than a football fieldand can absorb and release CO2 at far lower temperature changes than conventional technology.
Quantum computing can help advance research on novel adsorbents such as MOFs and resolve challenges arising from sensitivity to oxidation, water, and degradation caused by CO2.
Novel adsorbents that have a higher adsorption rate could reduce the cost of technology to $100 per ton of CO2e captured. This could be a critical threshold for uptake, given that corporate climate leaders such as Microsoft have publicly announced an expectation to pay $100 a ton long term for the highest-quality carbon removals. This would lead to an additional CO2reduction of 0.7 gigatons a year by 2035.
Twenty percent of annual greenhouse-gas emissions come from agricultureand methane emitted by cattle and dairy is the primary contributor (7.9 gigatons of CO2e, based on 20-year global-warming potential).
Research has established that low-methane feed additives could effectively stop up to 90 percent of methane emissions. Yet applying those additives for free-range livestock is particularly difficult.
An alternative solution is an antimethane vaccine that produces methanogen-targeting antibodies. This method has had some success in lab conditions, but in a cows gutchurning with gastric juices and foodthe antibodies struggle to latch on to the right microbes. Quantum computing could accelerate the research to find the right antibodies by precise molecule simulation instead of a costly and long trial-and-error method. With estimated uptake determined according to data from the US Environmental Protection Agency, we arrive at carbon reduction of up to an additional 1 gigaton a year by 2035.
Another prominent use case in agriculture is green ammonia discussed as a fuel above, where todays Haber-Bosch process uses large amounts of natural gas. Using such an alternative process could have an additional impact of up to 0.25 gigatons a year by 2035, replacing current conventionally produced fertilizers.
There are many more ways that quantum computing could be applied to the fight against climate change. Future possibilities include identification of new thermal-storage materials, high-temperature superconductors as a future base for lower losses in grids, or simulations to support nuclear fusion. Use cases arent limited to climate mitigation, but can also apply to adaptation, for example, improvements in weather prediction to give greater warning of major climatic events. But progress on those innovations will have to wait because first-generation machines will not be powerful enough for such breakthroughs (see sidebar Methodology).
The leap in CO2 abatement could be a major opportunity for corporates. With $3 to $5 trillion in value at stake in sustainability, according to McKinsey research, climate investment is an imperative for big companies. The use cases presented above represent major shifts and potential disruptions in these areas, and they are associated with huge value for players who take the lead. This opportunity is recognized by industry leaders who are already developing capabilities and talent.
Nevertheless, quantum technology is in the early stage and comes with the risks linked to leading-edge technology development, as well as tremendous cost. We have highlightedthe stage of the industry in the Quantum Technology Monitor. The risk to investors can be mitigated somewhat through steps such as onboarding technical experts to run in-depth diligence, forming joint investments with public entities or consortia, and investing in companies that bundle various ventures under one roof and provide the necessary experience to set up and scale these ventures.
In addition, governments have an important role to play by creating programs at universities to develop quantum talent and by providing incentives for quantum innovation for climate, particularly for use cases that today do not have natural corporate partners, such as disaster prediction, or that arent economical, such as direct-air capture. Governments could start more research programs like the partnership between IBM and the United Kingdom, the collaboration between IBM and Fraunhofer-Gesellschaft, the publicprivate partnership Quantum Delta in the Netherlands, and the collaboration between the United States and the United Kingdom. By tapping into quantum computing for sustainability, countries will accelerate the green transition, achieve national commitments, and get a head start in export markets. But even with those measures, the risk and expense remain high (Exhibit 5).
Exhibit 5
Here are some questions corporates and investors need to ask before taking a leap into quantum computing.
Is quantum computing relevant for you?
Determine whether there are use cases that can potentially disrupt your industry or your investments and address the decarbonization challenges of your organization. This article has highlighted anecdotal use cases across several categories to showcase the potential impact of quantum computing, but weve identified more than 100 sustainability-relevant use cases where quantum computing could play a major role. Quickly identifying use cases that are applicable to you and deciding how to address them can be highly valuable, as talent and capacity will be scarce in this decade.
How do I approach quantum computing now, if it is relevant?
Once you have engaged on quantum computing, building the right kind of approach, mitigating risk and securing access to talent and capacity are key.
Because of the high cost of this research, corporates can maximize their impact by forming partnerships with other players from their value chains and pooling expense and talent. For example, major consumers of hydrogen might join up with electrolyzer manufacturers to bring down the cost and share the value. These arrangements will require companies to figure out how to share innovation without losing competitive advantage. Collaborations such as joint ventures or precompetitive R&D could be an answer. We also foresee investors willing to support such endeavors to potentially remove some of the risk for corporates. And there are large amounts of dedicated climate finance available, judging by pledges made at COP26 that aim to reach the target of $100 billion a year in spending.
Do I have to start now?
While the first fault-tolerant quantum computer is several years away, it is important to start development work now. There is significant prework to be done to get to a maximal return on the significant investment that application of quantum computing will require.
Determining the exact parameters of a given problem and finding the best possible application will mean collaboration between application experts and quantum-computing technicians well versed in algorithm development. We estimate algorithm development would take up to 18 months, depending on the complexity.
It will also take time to set up the value chain, production, and go-to-market to ensure they are ready when quantum computing can be deployed and to fully benefit from the value created.
Quantum computing is a revolutionary technology that could allow for precise molecular-level simulation and a deeper understanding of natures basic laws. As this article shows, its development over the next few years could help solve scientific problems that until recently were believed to be insoluble. Clearing away these roadblocks could make the difference between a sustainable future and climate catastrophe.
Making quantum computing a reality will require an exceptional mobilization of resources, expertise, and funds. Only close cooperation between governments, scientists, academics, and investors in developing this technology can make it possible to reach the target for limiting emissions that will keep global warming at 1.5C and save the planet.
More:
Quantum computing just might save the planet - McKinsey
- Prediction: This Stock Will Be the Biggest Quantum Computing Winner of 2025 - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Schrdinger's Cat breakthrough could usher in the 'Holy Grail' of quantum computing, making them error-proof - Livescience.com - January 19th, 2025 [January 19th, 2025]
- Here's Some Reassuring News for Anyone Invested in Quantum Computing Stocks - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- What is the future of quantum computing going to look like? - opinion - The Jerusalem Post - January 19th, 2025 [January 19th, 2025]
- What Is Quantum Computing? And Should You Be Investing In It? - Investor's Business Daily - January 19th, 2025 [January 19th, 2025]
- 2 Quantum Computing Stocks That Could Be a Once-in-a-Lifetime Opportunity - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Quantum Computing vs. Traditional AI: Which Tech Stocks Are Must-Haves in 2025? - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Should You Buy Quantum Computing Stock While It's Below $15? - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Why Quantum Computing Stock IonQ Surged Higher This Week - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Why Rigetti Computing, IonQ, D-Wave Quantum, and Quantum Computing Stocks All Exploded Higher on Wednesday - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Miami University and Cleveland Clinic announce partnership to advance education in quantum computing - The Miami Student - January 19th, 2025 [January 19th, 2025]
- Interested in Quantum Computing? You Might Want to Hear What Nvidia's CEO Just Said About It - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Quantum-computing stocks could be rich takeover targets. Heres what to know. - MarketWatch - January 19th, 2025 [January 19th, 2025]
- D-Wave and Quantum Computing Stocks Are on the Rise. What You Should Know. - Barron's - January 19th, 2025 [January 19th, 2025]
- Jim Cramer Eyes Quantum Computing Stocks Like Rigetti, Warns Against Super Micro Computer: 'They Are Trying So Hard To Walk It Up Now' - Yahoo Finance - January 19th, 2025 [January 19th, 2025]
- Here's Some Reassuring News for Anyone Invested in Quantum Computing Stocks - MSN - January 19th, 2025 [January 19th, 2025]
- Quantum Computing vs. Traditional AI: Which Tech Stocks Are Must-Haves in 2025? - MSN - January 19th, 2025 [January 19th, 2025]
- The Blockchain Industry Cant Afford Complacency in Preparing for Quantum Computing - Blockhead - January 19th, 2025 [January 19th, 2025]
- Rigetti and D-Wave: Top Analyst Chooses the Best Quantum Computing Stocks to Buy - TipRanks - January 19th, 2025 [January 19th, 2025]
- Quantum Computing: The Next Big Thing? Investors Are Watching Closely! - Jomfruland.net - January 19th, 2025 [January 19th, 2025]
- Quantum Computing in Healthcare Overview and Leading Players: - openPR - January 19th, 2025 [January 19th, 2025]
- Interested in quantum computing investments? Hear what Nvidia's CEO just said about it - USA TODAY - January 19th, 2025 [January 19th, 2025]
- Quantum Computing: The Next Big Thing or Just Hype? - Jomfruland.net - January 19th, 2025 [January 19th, 2025]
- Miami University and Cleveland Clinic Announce Partnership to Advance Education in Quantum Computing - Cleveland Clinic Newsroom - January 15th, 2025 [January 15th, 2025]
- Quantum computing stocks rebound after massive sell-off as industry exec says opportunity is 'real' - Yahoo Finance - January 15th, 2025 [January 15th, 2025]
- D-Wave Partners with Carahsoft to Provide Quantum Computing Solutions for the Public Sector - The Quantum Insider - January 15th, 2025 [January 15th, 2025]
- Miami University And Cleveland Clinic Announce Partnership to Launch Specialized Quantum Computing Degree Program - The Quantum Insider - January 15th, 2025 [January 15th, 2025]
- Quantum computing stocks soar after Nvidia and Meta CEOs tanked them - Yahoo Finance - January 15th, 2025 [January 15th, 2025]
- Are Quantum Computing Stocks a Buy in January? - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- Jim Cramer Eyes Quantum Computing Stocks Like Rigetti, Warns Against Super Micro Computer: 'They Are Trying So Hard To Walk It Up Now' - Benzinga - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Stocks Roar Back to Life. Time to Buy? - 24/7 Wall St. - January 15th, 2025 [January 15th, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - January 15th, 2025 [January 15th, 2025]
- D-Wave Partners with Carahsoft to Bring Quantum Computing to U.S. Government Agencies - StockTitan - January 15th, 2025 [January 15th, 2025]
- Quantum computing applications are 'real today': D-Wave CEO - Yahoo Finance - January 15th, 2025 [January 15th, 2025]
- Nvidia's Jensen Huang and Meta's Mark Zuckerberg Pour Cold Water on Quantum Computing Hype. Here's 1 Stock to Buy Anyway. - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- Mark Zuckerberg joined Nvidia's CEO in doubting quantum computing and the stocks plunge again - Quartz - January 15th, 2025 [January 15th, 2025]
- Why Shares of Quantum Computing Stocks D-Wave Quantum, Quantum Computing, and Rigetti Computing Were Plunging Again Today - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- Expert: The Nvidia-Driven Selloff in Quantum Computing Stocks Is a Reason to Double Down on These 4 Names - Barchart - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Stocks Collapse: Here's Why - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- NVIDIA Announces First-Ever Quantum Day At GTC 2025, Days After Jensen Huang Said Quantum Computing Is 20 Years Away - Benzinga - January 15th, 2025 [January 15th, 2025]
- SAP CEO Sees Huge Quantum Computing Impact In 3 To 4 Years - Investor's Business Daily - January 15th, 2025 [January 15th, 2025]
- MIT sets world record with 99.998% fidelity in quantum computing breakthrough - Interesting Engineering - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Stocks Jump On D-Wave, Carahsoft Partnership - Yahoo! Voices - January 15th, 2025 [January 15th, 2025]
- IonQ and Rigetti: Top Analyst Chooses the Best Quantum Computing Stocks to Buy - TipRanks - January 15th, 2025 [January 15th, 2025]
- Scientists Create Split-Electrons, Unlocking the Future of Quantum Computing - SciTechDaily - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Can Be Brought to the Masses, if It Is Decentralized - CCN.com - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Specialist IonQ (IONQ) May Have Reached The End Of The Road - Barchart - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - Fortune - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Sink as Nvidia CEO Says Tech Is 15 to 30 Years Away - Investopedia - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Stocks Rigetti Computing, Quantum Computing, and D-Wave Computing All Plunged Today - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Crashed -- Here's Why - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jen-Hsun Huang's simple reminder that useful quantum computing is a long way off has somehow caused industry stocks to plummet - PC Gamer - January 9th, 2025 [January 9th, 2025]
- How Quantum Computing Could Advance One Health - Impakter - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks are having a rough start to 2025: IonQ, D-Wave, Rigetti tank after Nvidia CEO predicts 20-year horizon - Fast Company - January 9th, 2025 [January 9th, 2025]
- Quantum Computing, Inc. Announces Private Placement of Common Stock for Proceeds of $100 Million - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- 2025 will see huge advances in quantum computing. So what is a quantum chip and how does it work? - The Conversation - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - AOL - January 9th, 2025 [January 9th, 2025]
- Collaboration to explore the use of graphene technology in quantum computing - The Manufacturer - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks tumble after Nvidia boss Jensen Huang says the tech is still 20 years away - Markets Insider - January 9th, 2025 [January 9th, 2025]
- Want to Buy a Quantum Computing Stock in 2025? You Might Consider This Quantum Computing ETF. - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Ride the Quantum Computing Wave with These 2 Stocks: RGTI, QBTS - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- Shaping the Future of Quantum Computing in the United Arab Emirates (UAE) - Quantum Computing Report - January 9th, 2025 [January 9th, 2025]
- How Nvidia CEO Jensen Huang's one sentence wiped out $8 billion in market cap of quantum computing compan - The Times of India - January 9th, 2025 [January 9th, 2025]
- Will This Quantum Computing Stock Be a Must-Own in 2025? - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum-computing stocks tumble on Nvidia CEOs comment that theyre decades away from being very useful - Sherwood News - January 9th, 2025 [January 9th, 2025]
- Analyzing Quantum Computing Has Been The Most Challenging Project In My Career (NASDAQ:QUBT) - Seeking Alpha - January 3rd, 2025 [January 3rd, 2025]
- Norma and Mabel Quantum Partner to Launch Integrated Quantum Computing System in Korea - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- How Microsoft and Partners are Shaping the Future of Quantum Computing - The Quantum Insider - January 3rd, 2025 [January 3rd, 2025]
- One Quantum Computing ETF to Buy Hand Over Fist as Googles Willow Supercharges the Market - Barchart - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram Inc. Develops Semiconductor Quantum Dot Hole Spin Qubit Technology, Advancing the Frontiers of Quantum Computing - Yahoo Finance - January 3rd, 2025 [January 3rd, 2025]
- Quantum Applications in the Automotive Industry - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer Warns 'Day Is Not Near Enough To Justify The Current Valuations' Of Quantum Computing, Nuclear Power Stocks - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram's Stock Surges 31% on Quantum Computing Breakthrough: What This Means for the Future of Tech - The Africa Logistics - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Stocks Like Rigetti Computing Are Soaring And This ETF Lets Investors Participate In The Boom Story - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- Future Industry Growth Of Commercial Quantum Computing - openPR - January 3rd, 2025 [January 3rd, 2025]
- GCAN to Explore Strategic Alternatives in Artificial Intelligence and Quantum Computing - GlobeNewswire - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer talks being cautious with nuclear power and quantum computing stocks - MSN - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - December 27th, 2024 [December 27th, 2024]
- Should You Buy Quantum Computing Stocks in 2025? - The Motley Fool - December 27th, 2024 [December 27th, 2024]
- Rigetti Stock Doubles in Days: Here's the Quantum Computing Stock's Next Target - Money Morning - December 27th, 2024 [December 27th, 2024]