Quantum computing just might save the planet – McKinsey
The emerging technology of quantum computingcould revolutionize the fight against climate change, transforming the economics of decarbonization and becoming a major factor in limiting global warming to the target temperature of 1.5C (see sidebar What is quantum computing?).
Even though the technology is in the early stages of developmentexperts estimate the first generation of fault-tolerant quantum computing will arrive in the second half of this decadebreakthroughs are accelerating, investment dollars are pouring in, and start-ups are proliferating. Major tech companies have already developed small, so-called noisy intermediate-scale quantum (NISQ) machines, though these arent capable of performing the type of calculations that fully capable quantum computers are expected to perform.
Countries and corporates set ambitious new targets for reducing emissions at the 2021 United Nations Climate Change Conference (COP26). Those goals, if fully met, would represent an extraordinary annual investment of $4 trillion by 2030, the largest reallocation of capital in human history. But the measures would only reduce warming to between 1.7C and 1.8C by 2050, far short of the 1.5C level believed necessary to avoid catastrophic, runaway climate change.
Meeting the goal of net-zero emissions that countries and some industries have committed to wont be possible without huge advances in climate technology that arent achievable today. Even the most powerful supercomputers available now are not able to solve some of these problems. Quantum computing could be a game changer in those areas. In all, we think quantum computing could help develop climate technologies able to abate carbon on the order of 7 gigatons a year of additional CO2 impact by 2035, with the potential to bring the world in line with the 1.5C target.
Quantum computing could help reduce emissions in some of the most challenging or emissions-intensive areas, such as agriculture or direct-air capture, and could accelerate improvements in technologies required at great scale, such as solar panels or batteries. This article offers a look at some of the breakthroughs the technology could permit and attempts to quantify the impact of leveraging quantum-computer technology that are expected become available this decade.
Quantum computing could bring about step changes throughout the economy that would have a huge impact on carbon abatement and carbon removal, including by helping to solve persistent sustainability problems such as curbing methane produced by agriculture, making the production of cement emissions-free, improving electric batteries for vehicles, developing significantly better renewable solar technology, finding a faster way to bring down the cost of hydrogen to make it a viable alternative to fossil fuels, and using green ammonia as a fuel and a fertilizer.
Addressing the five areas designated in the Climate Math Reportas key for decarbonization, we have identified quantum-computing use cases that can pave the way to a net-zero economy. We project that by 2035 the use cases listed below could make it possible to eliminate more than 7 gigatons of CO2 equivalent (CO2e) from the atmosphere a year, compared with the current trajectory, or in aggregate more than 150 gigatons over the next 30 years (Exhibit 1).
Exhibit 1
Batteries are a critical element of achieving zero-carbon electrification. They are required to reduce CO2 emissions from transportation and to obtain grid-scale energy storage for intermittent energy sources such as solar cells or wind.
Improving the energy density of lithium-ion (Li-ion) batteries enables applications in electric vehicles and energy storage at an affordable cost. Over the past ten years, however, innovation has stalledbattery energy density improved 50 percent between 2011 and 2016, but only 25 percent between 2016 and 2020, and is expected to improve by just 17 percent between 2020 and 2025.
Recent research has shown that quantum computing will be able to simulate the chemistry of batteries in ways that cant be achieved now. Quantum computing could allow breakthroughs by providing a better understanding of electrolyte complex formation, by helping to find a replacement material for cathode/anode with the same properties and/or by eliminating the battery separator.
As a result, we could create batteries with 50 percent higher energy density for use in heavy-goods electric vehicles, which could substantially bring forward their economic use. The carbon benefits to passenger EVs wouldnt be huge, as these vehicles are expected to reach cost parity in many countries before the first generation of quantum computers is online, but consumers might still enjoy cost savings.
In addition, higher-density energy batteries can serve as a grid-scale storage solution. The impact on the worlds grids could be transformative. Halving the cost of grid-scale storage could enable a step change in the use of solar power, which is becoming economically competitive but is challenged by its generation profile. Our modeling suggests that halving the cost of solar panels could increase their use by 25 percent in Europe by 2050 but halving both solar and batteries might increase solar use by 60 percent (Exhibit 2). Geographies without such a high carbon price will see even greater impacts.
Exhibit 2
Through the combination of use cases described above, improved batteries could bring about an additional reduction in carbon dioxide emissions of 1.4 gigatons by 2035.
Many parts of the industry produce emissions that are either extremely expensive or logistically challenging to abate.
Cement is a case in point. During calcination in the kiln for the process of making clinker, a powder used to make cement, CO2 is released from raw materials. This process accounts for approximately two-thirds of cement emissions.
Alternative cement-binding materials (or clinkers) can eliminate these emissions, but theres currently no mature alternative clinker that can significantly reduce emissions at an affordable cost.
There are many possible permutations for such a product, but testing by trial and error is time-consuming and costly. Quantum computing can help to simulate theoretical material combinations to find one that overcomes todays challengesdurability, availability of raw materials and efflorescence (in the case of alkali-activated binders). This would have an estimated additional impact of 1 gigaton a year by 2035.
Solar cells will be one of the key electricity-generation sources in a net-zero economy. But even though they are getting cheaper, they still are far from their theoretical maximum efficiency.
Todays solar cells rely on crystalline silicon and have an efficiency on the order of 20 percent. Solar cells based on perovskite crystal structures, which have a theoretical efficiency of up to 40 percent, could be a better alternative. They present challenges, however, because they lack long-term stability and could, in some varieties, be more toxic. Furthermore, the technology has not been mass produced yet.
Quantum computing could help tackle these challenges by allowing for precise simulation of perovskite structures in all combinations using different base atoms and doping, thereby identifying higher efficiency, higher durability, and nontoxic solutions. If the theoretical efficiency increase can be reached, the levelized cost of electricity (LCOE) would decrease by 50 percent.
By simulating the impact of cheaper and more efficient quantum-enabled solar panels, we see a significant increase in use in areas with lower carbon prices (China, for example). This is also true of countries in Europe with high irradiance (Spain, Greece) or poor conditions for wind energy (Hungary). The impact is magnified when combined with cheap battery storage, as discussed above.
This technology could abate an additional 0.4 gigatons of CO2 emissions by 2035.
Hydrogen is widely considered to be a viable replacement for fossil fuels in many parts of the economy, especially in industry where high temperature is needed and electrification isnt possible or sufficient, or where hydrogen is needed as a feedstock, such as steelmaking or ethylene production.
Before the 2022 gas price spikes, green hydrogen was about 60 percent more expensive than natural gas. But improving electrolysis could significantly decrease the cost of hydrogen.
Polymer electrolyte membrane (PEM) electrolyzers split water and are one way to make green hydrogen. They have improved in recent times but still face two major challenges.
Quantum computing can help model the energy state of pulse electrolysis to optimize catalyst usage, which would increase efficiency. Quantum computing could also model the chemical composition of catalysts and membranes to ensure the most efficient interactions. And it could push the efficiency of the electrolysis process up to 100 percent and reduce the cost of hydrogen by 35 percent. If combined with cheaper solar cells discovered by quantum computing (discussed above), the cost of hydrogen could be reduced by 60 percent (Exhibit 3).
Exhibit 3
Increased hydrogen use as a result of these improvements could reduce CO2 emissions by an additional 1.1 gigatons by 2035.
Ammonia is best known as a fertilizer, but could also be used as fuel, potentially making it one of the best decarbonization solutions for the worlds ships. Today, it represents 2 percent of total global final energy consumption.
For the moment, ammonia is made through the energy-intensive Haber-Bosch process using natural gas. There are several options for creating green ammonia, but they rely on similar processes. For example, green hydrogen can be used as a feedstock, or the carbon dioxide emissions that are caused by the process can be captured and stored.
However, there are other potential approaches, such as nitrogenase bioelectrocatalysis, which is how nitrogen fixation works naturally when plants take nitrogen gas directly from the air and nitrogenase enzymes catalyze its conversion into ammonia. This method is attractive because it can be done at room temperature and at 1 bar pressure, compared with 500C at high pressure using Haber-Bosch, which consumes large amounts of energy (in the form of natural gas) (Exhibit 4).
Exhibit 4
Innovation has reached a stage where it might be possible to replicate nitrogen fixation artificially, but only if we can overcome challenges such as enzyme stability, oxygen sensitivity, and low rates of ammonia production by nitrogenase. The concept works in the lab but not at scale.
Quantum computing can help simulate the process of enhancing the stability of the enzyme, protecting it from oxygen and improving the rate of ammonia production by nitrogenase. That would result in a 67 percent cost reduction over todays green ammonia produced through electrolysis, which would make green ammonia even cheaper than traditionally produced ammonia. Such a cost reduction could not only lessen the CO2 impacts of the production of ammonia for agricultural use but could also bring forward the breakeven for ammonia in shippingwhere it is expected to be a major decarbonization optionforward by ten years.
Using quantum computing to facilitate cheaper green ammonia as a shipping fuel could abate an additional CO2 by 0.4 gigatons by 2035.
Carbon capture is required to achieve net zero. Both types of carbon capturepoint source and directcould be aided by quantum computing.
Point-source carbon capture allows CO2 to be captured directly from industrial sources such as a cement or steel blast furnace. But the vast majority of CO2 capture is too expensive to be viable for now, mainly because it is energy intense.
One possible solution: novel solvents, such as water-lean and multiphase solvents, which could offer lower-energy requirements, but it is difficult to predict the properties of the potential material at a molecular level.
Quantum computing promises to enable more accurate modeling of molecular structure to design new, effective solvents for a range of CO2 sources, which could reduce the cost of the process by 30 to 50 percent.
We believe this has significant potential to decarbonize industrial processes, which could lead to additional decarbonization of up to 1.5 gigatons a year, including cement. If the cement clinker approach described above is successful, this would still have an effect of 0.5 gigatons a year, due to fuel emissions. In addition, alternative clinkers may not be available in some regions.
Direct-air capture, which involves sucking CO2 from the air, is a way to address carbon removals. While the Intergovernmental Panel on Climate Change says this approach is required to achieve net zero, it is very expensive (ranging from $250 to $600 per ton a day today) and even more energy intensive than point-source capture.
Adsorbents are best suited for effective direct-air capture and novel approaches, such as metal organic frameworks, or MOFs, have the potential to greatly reduce the energy requirements and the capital cost of the infrastructure. MOFs act like a giant spongeas little as a gram can have a surface area larger than a football fieldand can absorb and release CO2 at far lower temperature changes than conventional technology.
Quantum computing can help advance research on novel adsorbents such as MOFs and resolve challenges arising from sensitivity to oxidation, water, and degradation caused by CO2.
Novel adsorbents that have a higher adsorption rate could reduce the cost of technology to $100 per ton of CO2e captured. This could be a critical threshold for uptake, given that corporate climate leaders such as Microsoft have publicly announced an expectation to pay $100 a ton long term for the highest-quality carbon removals. This would lead to an additional CO2reduction of 0.7 gigatons a year by 2035.
Twenty percent of annual greenhouse-gas emissions come from agricultureand methane emitted by cattle and dairy is the primary contributor (7.9 gigatons of CO2e, based on 20-year global-warming potential).
Research has established that low-methane feed additives could effectively stop up to 90 percent of methane emissions. Yet applying those additives for free-range livestock is particularly difficult.
An alternative solution is an antimethane vaccine that produces methanogen-targeting antibodies. This method has had some success in lab conditions, but in a cows gutchurning with gastric juices and foodthe antibodies struggle to latch on to the right microbes. Quantum computing could accelerate the research to find the right antibodies by precise molecule simulation instead of a costly and long trial-and-error method. With estimated uptake determined according to data from the US Environmental Protection Agency, we arrive at carbon reduction of up to an additional 1 gigaton a year by 2035.
Another prominent use case in agriculture is green ammonia discussed as a fuel above, where todays Haber-Bosch process uses large amounts of natural gas. Using such an alternative process could have an additional impact of up to 0.25 gigatons a year by 2035, replacing current conventionally produced fertilizers.
There are many more ways that quantum computing could be applied to the fight against climate change. Future possibilities include identification of new thermal-storage materials, high-temperature superconductors as a future base for lower losses in grids, or simulations to support nuclear fusion. Use cases arent limited to climate mitigation, but can also apply to adaptation, for example, improvements in weather prediction to give greater warning of major climatic events. But progress on those innovations will have to wait because first-generation machines will not be powerful enough for such breakthroughs (see sidebar Methodology).
The leap in CO2 abatement could be a major opportunity for corporates. With $3 to $5 trillion in value at stake in sustainability, according to McKinsey research, climate investment is an imperative for big companies. The use cases presented above represent major shifts and potential disruptions in these areas, and they are associated with huge value for players who take the lead. This opportunity is recognized by industry leaders who are already developing capabilities and talent.
Nevertheless, quantum technology is in the early stage and comes with the risks linked to leading-edge technology development, as well as tremendous cost. We have highlightedthe stage of the industry in the Quantum Technology Monitor. The risk to investors can be mitigated somewhat through steps such as onboarding technical experts to run in-depth diligence, forming joint investments with public entities or consortia, and investing in companies that bundle various ventures under one roof and provide the necessary experience to set up and scale these ventures.
In addition, governments have an important role to play by creating programs at universities to develop quantum talent and by providing incentives for quantum innovation for climate, particularly for use cases that today do not have natural corporate partners, such as disaster prediction, or that arent economical, such as direct-air capture. Governments could start more research programs like the partnership between IBM and the United Kingdom, the collaboration between IBM and Fraunhofer-Gesellschaft, the publicprivate partnership Quantum Delta in the Netherlands, and the collaboration between the United States and the United Kingdom. By tapping into quantum computing for sustainability, countries will accelerate the green transition, achieve national commitments, and get a head start in export markets. But even with those measures, the risk and expense remain high (Exhibit 5).
Exhibit 5
Here are some questions corporates and investors need to ask before taking a leap into quantum computing.
Is quantum computing relevant for you?
Determine whether there are use cases that can potentially disrupt your industry or your investments and address the decarbonization challenges of your organization. This article has highlighted anecdotal use cases across several categories to showcase the potential impact of quantum computing, but weve identified more than 100 sustainability-relevant use cases where quantum computing could play a major role. Quickly identifying use cases that are applicable to you and deciding how to address them can be highly valuable, as talent and capacity will be scarce in this decade.
How do I approach quantum computing now, if it is relevant?
Once you have engaged on quantum computing, building the right kind of approach, mitigating risk and securing access to talent and capacity are key.
Because of the high cost of this research, corporates can maximize their impact by forming partnerships with other players from their value chains and pooling expense and talent. For example, major consumers of hydrogen might join up with electrolyzer manufacturers to bring down the cost and share the value. These arrangements will require companies to figure out how to share innovation without losing competitive advantage. Collaborations such as joint ventures or precompetitive R&D could be an answer. We also foresee investors willing to support such endeavors to potentially remove some of the risk for corporates. And there are large amounts of dedicated climate finance available, judging by pledges made at COP26 that aim to reach the target of $100 billion a year in spending.
Do I have to start now?
While the first fault-tolerant quantum computer is several years away, it is important to start development work now. There is significant prework to be done to get to a maximal return on the significant investment that application of quantum computing will require.
Determining the exact parameters of a given problem and finding the best possible application will mean collaboration between application experts and quantum-computing technicians well versed in algorithm development. We estimate algorithm development would take up to 18 months, depending on the complexity.
It will also take time to set up the value chain, production, and go-to-market to ensure they are ready when quantum computing can be deployed and to fully benefit from the value created.
Quantum computing is a revolutionary technology that could allow for precise molecular-level simulation and a deeper understanding of natures basic laws. As this article shows, its development over the next few years could help solve scientific problems that until recently were believed to be insoluble. Clearing away these roadblocks could make the difference between a sustainable future and climate catastrophe.
Making quantum computing a reality will require an exceptional mobilization of resources, expertise, and funds. Only close cooperation between governments, scientists, academics, and investors in developing this technology can make it possible to reach the target for limiting emissions that will keep global warming at 1.5C and save the planet.
More:
Quantum computing just might save the planet - McKinsey
- Want to Invest in Quantum Computing? 5 Stocks That Are Great Buys Right Now - The Motley Fool - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Right Now? - Nasdaq - October 17th, 2025 [October 17th, 2025]
- IBM CEO On Growing Channel Revenue, Quantum Computing Opportunities, And Why AI Is Not Magic - CRN Magazine - October 17th, 2025 [October 17th, 2025]
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- AI and quantum computing are converging. Both could get a boost - qz.com - October 15th, 2025 [October 15th, 2025]
- Quantum computing on the verge: a look at the quantum marketplace of today - Physics World - October 15th, 2025 [October 15th, 2025]
- Quantum computing stocks soared again yesterday. The reason why may surprise even their biggest boosters - Fast Company - October 15th, 2025 [October 15th, 2025]
- IONQ, RGTI, QBTS: Which Is the Better Quantum Computing Stock? - TipRanks - October 15th, 2025 [October 15th, 2025]
- D-Wave Helps Launch Q-Alliance to Build Italys Quantum Computing Hub in Lombardy - HPCwire - October 15th, 2025 [October 15th, 2025]
- Quantum crystals offer a blueprint for the future of computing and chemistry - Phys.org - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - Quantum Computing Report - October 15th, 2025 [October 15th, 2025]
- Quantum Computing and the Next Big Threat to Encryption - The Engineer - Home - October 15th, 2025 [October 15th, 2025]
- Bose Quantum Secures Hundreds of Millions of Yuan in Series A++ Financing: Nobel Prize Usher in the Quantum Computing Exploration Era - 36Kr - October 15th, 2025 [October 15th, 2025]
- Aramco, NVIDIA Expect Gusher of Energy Insights From New Quantum Computing Emulator - The Quantum Insider - October 15th, 2025 [October 15th, 2025]
- 'Make or break': Why the next few years will be crucial for this Canadian company and quantum computing - Financial Post - October 15th, 2025 [October 15th, 2025]
- Isentroniq Raises 7.5M ($8.7M USD) to Advance Wiring Technology for Superconducting Qubits - Quantum Computing Report - October 15th, 2025 [October 15th, 2025]
- Why Is Quantum Computing Inc. Stock Jumping Today? - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - Nasdaq - October 15th, 2025 [October 15th, 2025]
- Rigetti Computing Stock: Whats Next for the Quantum Computing Pioneer in the Next 3 Years? - TECHi - October 15th, 2025 [October 15th, 2025]
- Quantum computing is the next AI: are you ready for it? - Fast Company - October 13th, 2025 [October 13th, 2025]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2026 - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- Quantum computing firm with Seattle-area presence raising billions for expansion - The Business Journals - October 13th, 2025 [October 13th, 2025]
- 3 Quantum Computing Stocks That Could Help Make You a Fortune - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Before Wall Street Catches On? - Yahoo Finance - October 13th, 2025 [October 13th, 2025]
- Quantum Computing Stocks IonQ, Rigetti, and D-Wave Have Soared Up to 5,400% Over the Trailing Year -- but History Offers a Dire Warning - Yahoo... - October 13th, 2025 [October 13th, 2025]
- BTQ Technologies and University of Cambridge Partner to Advance Inverse-Design Quantum Photonic Devices - Quantum Computing Report - October 13th, 2025 [October 13th, 2025]
- French-based quantum computing company to open U.S. headquarters in Chicago - The Daily Line - October 13th, 2025 [October 13th, 2025]
- What is quantum computing and why is Palm Beach County so interested in it? - The Palm Beach Post - October 11th, 2025 [October 11th, 2025]
- Alice & Bob Shortens Timeline to Quantum Computing Applications in Healthcare and Agriculture - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- WisdomTree rolls out quantum computing fund (WT:NYSE) - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- Individual electrons trapped and controlled above 1 K, easing cooling limits for quantum computing - Phys.org - October 11th, 2025 [October 11th, 2025]
- Quantum Computing Stocks To Keep An Eye On - October 7th - MarketBeat - October 11th, 2025 [October 11th, 2025]
- Analysts See over 20% Upside in These 3 Quantum Computing Stocks 10/10/2025 - TipRanks - October 11th, 2025 [October 11th, 2025]
- These Nobel Prize Winners Paved The Way For Quantum Computing - Forbes - October 11th, 2025 [October 11th, 2025]
- The Quantum Leap in Marketing: How Quantum Computing Will Redefine Analytics - Eye On Annapolis - October 11th, 2025 [October 11th, 2025]
- A Nobel for the physics that ushered in quantum computing - The Economist - October 11th, 2025 [October 11th, 2025]
- The Next Big Theme: Positioning For Early Growth In Quantum Computing - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- Quantum Computing Stocks Defy Broader Market Headwinds on October 10, 2025: A Glimpse into the Future of High-Tech Investment - FinancialContent - October 11th, 2025 [October 11th, 2025]
- Stockholm-based FirstQFM raises 1.2 million to accelerate commercial quantum computing with proprietary foundation models - EU-Startups - October 11th, 2025 [October 11th, 2025]
- Quantum Computing Stocks IonQ, Rigetti, and D-Wave Have Soared Up to 5,400% Over the Trailing Year -- but History Offers a Dire Warning - AOL.com - October 11th, 2025 [October 11th, 2025]
- Why Rigetti Computing (RGTI) Is Up 33.1% After Securing $5.7 Million in Quantum Hardware Orders - simplywall.st - October 11th, 2025 [October 11th, 2025]
- Tech Communication in London, UK - Defending Against Emerging Threat with Quantum Computing - PR Newswire - October 11th, 2025 [October 11th, 2025]
- Quantum Computing to Raise $750 Million in Private Placement. The Stock Falls. - Barron's - October 9th, 2025 [October 9th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Physics Nobel: Three win prize for paving way for very powerful computers - BBC - October 9th, 2025 [October 9th, 2025]
- 3 Genius Ways to Invest in Quantum Computing and Artificial Intelligence (AI) - The Motley Fool - October 9th, 2025 [October 9th, 2025]
- Prediction: This Artificial Intelligence (AI) Stock Will Be the Nvidia of Quantum Computing by 2035 - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- D-Wave and the University of Southern California Bring Quantum Computing to LA Tech Week - Business Wire - October 9th, 2025 [October 9th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - The Motley Fool - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks that Could Be The Next Nvidia - 24/7 Wall St. - October 9th, 2025 [October 9th, 2025]
- Why Quantum Computing Threat Will Impact Absolutely Everyone In Security: Experts - CRN Magazine - October 9th, 2025 [October 9th, 2025]
- What Are Memristors And Why Do They Matter For Quantum Computing? - The Quantum Insider - October 9th, 2025 [October 9th, 2025]
- Quantum Computing As a Service Enables Access to Programmable Bits for Utility Computing Applications - Quantum Zeitgeist - October 9th, 2025 [October 9th, 2025]
- What Is One of the Best Quantum Computing Stocks for Growth Investors? - The Motley Fool - October 9th, 2025 [October 9th, 2025]
- Quantum Computing Taps Investors for $750 million in Oversubscribed Deal - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Quantum Computing Inc. Announces $750 Million Oversubscribed Private Placement of Common Stock Priced at the Market Under Nasdaq Rules - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Quantum Leap or Speculative Bubble? Wall Street Bets Big on the Future of Computing - FinancialContent - October 7th, 2025 [October 7th, 2025]
- Analysts Think This Quantum Computing Stock Can Gain 80%. Should You Buy It Here? - Yahoo Finance - October 7th, 2025 [October 7th, 2025]
- IonQ and Rigetti stocks and the quantum computing bubble - Invezz - October 7th, 2025 [October 7th, 2025]
- These Quantum Computing Stocks Could Be the Secret Winners of the AI Boom - The Motley Fool - October 7th, 2025 [October 7th, 2025]
- Quantum Computing (QUBT) Shares Are Sliding Today: Here's Why - Benzinga - October 7th, 2025 [October 7th, 2025]
- This Little-Known Company Is Betting Big on Quantum Computing. Should You Buy Its Stock Here? - MSN - October 7th, 2025 [October 7th, 2025]
- Analysts Think This Quantum Computing Stock Can Gain 80%. Should You Buy It Here? - MSN - October 7th, 2025 [October 7th, 2025]
- This Little-Known Company Is Betting Big on Quantum Computing. Should You Buy Its Stock Here? - Barchart.com - October 7th, 2025 [October 7th, 2025]
- Where Will Quantum Computing Inc. Be in 1 Year? - Yahoo Finance - October 7th, 2025 [October 7th, 2025]
- Quobly reinforces its leadership with a holistic governance model for silicon quantum computing - Quantum Zeitgeist - October 7th, 2025 [October 7th, 2025]
- Quantum Computing Stock Could Rise 67%, Says Analyst. Heres Why. - Barron's - October 4th, 2025 [October 4th, 2025]
- Where Will Quantum Computing Inc. Be in 1 Year? - The Motley Fool - October 4th, 2025 [October 4th, 2025]
- Analyzing the Sharp Rise of Quantum Computing Inc. - StocksToTrade - October 4th, 2025 [October 4th, 2025]
- QUDORA closes a Strategic Partnership with Kensho to Accelerate Quantum Computing Commercialization in Taiwan - Quantum Zeitgeist - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Inc. Stock (QUBT) Opinions on Recent Stock Offering and Analyst Upgrade - Quiver Quantitative - October 4th, 2025 [October 4th, 2025]
- How Quantum Computings Biggest Challenges Are Being Solved With Accelerated Computing - NVIDIA Blog - October 2nd, 2025 [October 2nd, 2025]
- Here's the Quantum Computing Stock Wall Street Loves the Most (Hint: It's Not IonQ or Rigetti) - Yahoo Finance - October 2nd, 2025 [October 2nd, 2025]
- D-Wave to Participate in Quantum Beach Conference, Highlighting Companys Leadership in the Commercialization of Quantum Computing - Yahoo Finance - October 2nd, 2025 [October 2nd, 2025]
- Quantum computing could have a major impact on investing - Business Insider - October 2nd, 2025 [October 2nd, 2025]
- Here's the Quantum Computing Stock Wall Street Loves the Most (Hint: It's Not IonQ or Rigetti) - The Motley Fool - October 2nd, 2025 [October 2nd, 2025]
- IBM and Vanguard Team Up to Build Investment Portfolios with Quantum Computing - TipRanks - October 2nd, 2025 [October 2nd, 2025]
- Connecticut to Invest $10 Million in QuantumCT for Quantum Infrastructure and Testbed Deployment - Quantum Computing Report - October 2nd, 2025 [October 2nd, 2025]
- Odra Quantum Computing School Debuts in Poland with Intensive Training and Hackathon - HPCwire - October 2nd, 2025 [October 2nd, 2025]
- Billionaires Are Piling Into a Quantum Computing Stock That Gained Over 3,700% in the Past Year - The Motley Fool - October 2nd, 2025 [October 2nd, 2025]