Quantum computing – Wikipedia
Study of a model of computation
Quantum computing is a type of computation that harnesses the collective properties of quantum states, such as superposition, interference, and entanglement, to perform calculations. The devices that perform quantum computations are known as quantum computers.[1]:I-5 They are believed to be able to solve certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. Expansion is expected in the next few years[when?] as the field shifts toward real-world use in pharmaceutical, data security and other applications.[2]
Quantum computing began in 1980 when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine.[3]Richard FeynmanandYuri Maninlater suggested that a quantum computer had the potential to simulate things a classical computer could not feasibly do.[4][5] In 1994, Peter Shor developed a quantum algorithm for factoring integers with the potential to decrypt RSA-encrypted communications.[6] Despite ongoing experimental progress since the late 1990s, most researchers believe that "fault-tolerant quantum computing [is] still a rather distant dream."[7] In recent years, investment in quantum computing research has increased in the public and private sectors.[8][9] On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), claimed to have performed a quantum computation that was infeasible on any classical computer,[10][11] but whether this claim was or is still valid is a topic of active research.[12][13]
There are several types of quantum computers (also known as quantum computing systems), including the quantum circuit model, quantum Turing machine, adiabatic quantum computer, one-way quantum computer, and various quantum cellular automata. The most widely used model is the quantum circuit, based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum state, or in a superposition of the 1 and 0 states. When it is measured, however, it is always 0 or 1; the probability of either outcome depends on the qubit's quantum state immediately prior to measurement.
Efforts towards building a physical quantum computer focus on technologies such as transmons, ion traps and topological quantum computers, which aim to create high-quality qubits.[1]:213 These qubits may be designed differently, depending on the full quantum computer's computing model, whether quantum logic gates, quantum annealing, or adiabatic quantum computation. There are currently a number of significant obstacles to constructing useful quantum computers. It is particularly difficult to maintain qubits' quantum states, as they suffer from quantum decoherence and state fidelity. Quantum computers therefore require error correction.[14][15]
Any computational problem that can be solved by a classical computer can also be solved by a quantum computer.[16] Conversely, any problem that can be solved by a quantum computer can also be solved by a classical computer, at least in principle given enough time. In other words, quantum computers obey the ChurchTuring thesis. This means that while quantum computers provide no additional advantages over classical computers in terms of computability, quantum algorithms for certain problems have significantly lower time complexities than corresponding known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of timea feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory.
The prevailing model of quantum computation describes the computation in terms of a network of quantum logic gates.[17] This model can be thought of as an abstract linear-algebraic generalization of a classical circuit. Since this circuit model obeys quantum mechanics, a quantum computer capable of efficiently running these circuits is believed to be physically realizable.
A memory consisting of n {textstyle n} bits of information has 2 n {textstyle 2^{n}} possible states. A vector representing all memory states thus has 2 n {textstyle 2^{n}} entries (one for each state). This vector is viewed as a probability vector and represents the fact that the memory is to be found in a particular state.
In the classical view, one entry would have a value of 1 (i.e. a 100% probability of being in this state) and all other entries would be zero. In quantum mechanics, probability vectors can be generalized to density operators. The quantum state vector formalism is usually introduced first because it is conceptually simpler, and because it can be used instead of the density matrix formalism for pure states, where the whole quantum system is known.
We begin by considering a simple memory consisting of only one bit. This memory may be found in one of two states: the zero state or the one state. We may represent the state of this memory using Dirac notation so that
The state of this one-qubit quantum memory can be manipulated by applying quantum logic gates, analogous to how classical memory can be manipulated with classical logic gates. One important gate for both classical and quantum computation is the NOT gate, which can be represented by a matrix
The mathematics of single qubit gates can be extended to operate on multi-qubit quantum memories in two important ways. One way is simply to select a qubit and apply that gate to the target qubit whilst leaving the remainder of the memory unaffected. Another way is to apply the gate to its target only if another part of the memory is in a desired state. These two choices can be illustrated using another example. The possible states of a two-qubit quantum memory are
In summary, a quantum computation can be described as a network of quantum logic gates and measurements. However, any measurement can be deferred to the end of quantum computation, though this deferment may come at a computational cost, so most quantum circuits depict a network consisting only of quantum logic gates and no measurements.
Any quantum computation (which is, in the above formalism, any unitary matrix over n {displaystyle n} qubits) can be represented as a network of quantum logic gates from a fairly small family of gates. A choice of gate family that enables this construction is known as a universal gate set, since a computer that can run such circuits is a universal quantum computer. One common such set includes all single-qubit gates as well as the CNOT gate from above. This means any quantum computation can be performed by executing a sequence of single-qubit gates together with CNOT gates. Though this gate set is infinite, it can be replaced with a finite gate set by appealing to the Solovay-Kitaev theorem.
Progress in finding quantum algorithms typically focuses on this quantum circuit model, though exceptions like the quantum adiabatic algorithm exist. Quantum algorithms can be roughly categorized by the type of speedup achieved over corresponding classical algorithms.[18]
Quantum algorithms that offer more than a polynomial speedup over the best known classical algorithm include Shor's algorithm for factoring and the related quantum algorithms for computing discrete logarithms, solving Pell's equation, and more generally solving the hidden subgroup problem for abelian finite groups.[18] These algorithms depend on the primitive of the quantum Fourier transform. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely.[19] Certain oracle problems like Simon's problem and the BernsteinVazirani problem do give provable speedups, though this is in the quantum query model, which is a restricted model where lower bounds are much easier to prove and doesn't necessarily translate to speedups for practical problems.
Other problems, including the simulation of quantum physical processes from chemistry and solid-state physics, the approximation of certain Jones polynomials, and the quantum algorithm for linear systems of equations have quantum algorithms appearing to give super-polynomial speedups and are BQP-complete. Because these problems are BQP-complete, an equally fast classical algorithm for them would imply that no quantum algorithm gives a super-polynomial speedup, which is believed to be unlikely.[20]
Some quantum algorithms, like Grover's algorithm and amplitude amplification, give polynomial speedups over corresponding classical algorithms.[18] Though these algorithms give comparably modest quadratic speedup, they are widely applicable and thus give speedups for a wide range of problems.[21] Many examples of provable quantum speedups for query problems are related to Grover's algorithm, including Brassard, Hyer, and Tapp's algorithm for finding collisions in two-to-one functions,[22] which uses Grover's algorithm, and Farhi, Goldstone, and Gutmann's algorithm for evaluating NAND trees,[23] which is a variant of the search problem.
A notable application of quantum computation is for attacks on cryptographic systems that are currently in use. Integer factorization, which underpins the security of public key cryptographic systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few prime numbers (e.g., products of two 300-digit primes).[24] By comparison, a quantum computer could efficiently solve this problem using Shor's algorithm to find its factors. This ability would allow a quantum computer to break many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers or the discrete logarithm problem, both of which can be solved by Shor's algorithm. In particular, the RSA, DiffieHellman, and elliptic curve DiffieHellman algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.
Identifying cryptographic systems that may be secure against quantum algorithms is an actively researched topic under the field of post-quantum cryptography.[25][26] Some public-key algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the McEliece cryptosystem based on a problem in coding theory.[25][27] Lattice-based cryptosystems are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the dihedral hidden subgroup problem, which would break many lattice based cryptosystems, is a well-studied open problem.[28] It has been proven that applying Grover's algorithm to break a symmetric (secret key) algorithm by brute force requires time equal to roughly 2n/2 invocations of the underlying cryptographic algorithm, compared with roughly 2n in the classical case,[29] meaning that symmetric key lengths are effectively halved: AES-256 would have the same security against an attack using Grover's algorithm that AES-128 has against classical brute-force search (see Key size).
Quantum cryptography could potentially fulfill some of the functions of public key cryptography. Quantum-based cryptographic systems could, therefore, be more secure than traditional systems against quantum hacking.[30]
The most well-known example of a problem admitting a polynomial quantum speedup is unstructured search, finding a marked item out of a list of n {displaystyle n} items in a database. This can be solved by Grover's algorithm using O ( n ) {displaystyle O({sqrt {n}})} queries to the database, quadratically fewer than the ( n ) {displaystyle Omega (n)} queries required for classical algorithms. In this case, the advantage is not only provable but also optimal: it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups.
Problems that can be addressed with Grover's algorithm have the following properties:[citation needed]
For problems with all these properties, the running time of Grover's algorithm on a quantum computer scales as the square root of the number of inputs (or elements in the database), as opposed to the linear scaling of classical algorithms. A general class of problems to which Grover's algorithm can be applied[31] is Boolean satisfiability problem, where the database through which the algorithm iterates is that of all possible answers. An example and (possible) application of this is a password cracker that attempts to guess a password. Symmetric ciphers such as Triple DES and AES are particularly vulnerable to this kind of attack.[citation needed] This application of quantum computing is a major interest of government agencies.[32]
Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe quantum simulation will be one of the most important applications of quantum computing.[33] Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a collider.[34]Quantum simulations might be used to predict future paths of particles and protons under superposition in the double-slit experiment.[citation needed]About 2% of the annual global energy output is used for nitrogen fixation to produce ammonia for the Haber process in the agricultural fertilizer industry while naturally occurring organisms also produce ammonia. Quantum simulations might be used to understand this process increasing production.[35]
Quantum annealing or Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.
Since quantum computers can produce outputs that classical computers cannot produce efficiently, and since quantum computation is fundamentally linear algebraic, some express hope in developing quantum algorithms that can speed up machine learning tasks.[36][37]For example, the quantum algorithm for linear systems of equations, or "HHL Algorithm", named after its discoverers Harrow, Hassidim, and Lloyd, is believed to provide speedup over classical counterparts.[38][37] Some research groups have recently explored the use of quantum annealing hardware for training Boltzmann machines and deep neural networks.[39][40]
In the field of computational biology, computing has played a big role in solving many biological problems. One of the well-known examples would be in computational genomics and how computing has drastically reduced the time to sequence a human genome. Given how computational biology is using generic data modeling and storage, its applications to computational biology are expected to arise as well.[41]
Deep generative chemistry models emerge as powerful tools to expedite drug discovery. However, the immense size and complexity of the structural space of all possible drug-like molecules pose significant obstacles, which could be overcome in the future by quantum computers. Quantum computers are naturally good for solving complex quantum many-body problems [42] and thus may be instrumental in applications involving quantum chemistry. Therefore, one can expect that quantum-enhanced generative models[43] including quantum GANs[44] may eventually be developed into ultimate generative chemistry algorithms. Hybrid architectures combining quantum computers with deep classical networks, such as Quantum Variational Autoencoders, can already be trained on commercially available annealers and used to generate novel drug-like molecular structures.[45]
John Preskill has introduced the term quantum supremacy to refer to the hypothetical speedup advantage that a quantum computer would have over a classical computer in a certain field.[46] Google announced in 2017 that it expected to achieve quantum supremacy by the end of the year though that did not happen. IBM said in 2018 that the best classical computers will be beaten on some practical task within about five years and views the quantum supremacy test only as a potential future benchmark.[47] Although skeptics like Gil Kalai doubt that quantum supremacy will ever be achieved,[48][49] in October 2019, a Sycamore processor created in conjunction with Google AI Quantum was reported to have achieved quantum supremacy,[50] with calculations more than 3,000,000 times as fast as those of Summit, generally considered the world's fastest computer.[51] In December 2020, a group at USTC implemented a type of Boson sampling on 76 photons with a photonic quantum computer Jiuzhang to demonstrate quantum supremacy.[52][53][54] The authors claim that a classical contemporary supercomputer would require a computational time of 600 million years to generate the number of samples their quantum processor can generate in 20 seconds.[55] Bill Unruh doubted the practicality of quantum computers in a paper published back in 1994.[56] Paul Davies argued that a 400-qubit computer would even come into conflict with the cosmological information bound implied by the holographic principle.[57]
There are a number of technical challenges in building a large-scale quantum computer.[58] Physicist David DiVincenzo has listed these requirements for a practical quantum computer:[59]
Sourcing parts for quantum computers is also very difficult. Many quantum computers, like those constructed by Google and IBM, need Helium-3, a nuclear research byproduct, and special superconducting cables made only by the Japanese company Coax Co.[60]
The control of multi-qubit systems requires the generation and coordination of a large number of electrical signals with tight and deterministic timing resolution. This has led to the development of quantum controllers which enable interfacing with the qubits. Scaling these systems to support a growing number of qubits is an additional challenge.[citation needed]
One of the greatest challenges involved with constructing quantum computers is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time T2 (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature.[61] Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence.[62] A 2020 study argues that ionizing radiation such as cosmic rays can nevertheless cause certain systems to decohere within milliseconds.[63]
As a result, time-consuming tasks may render some quantum algorithms inoperable, as maintaining the state of qubits for a long enough duration will eventually corrupt the superpositions.[64]
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical pulse shaping. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.
As described in the Quantum threshold theorem, if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 103, assuming the noise is depolarizing.
Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between L and L2, where L is the number of digits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of L. For a 1000-bit number, this implies a need for about 104 bits without error correction.[65] With error correction, the figure would rise to about 107 bits. Computation time is about L2 or about 107 steps and at 1MHz, about 10 seconds.
A very different approach to the stability-decoherence problem is to create a topological quantum computer with anyons, quasi-particles used as threads and relying on braid theory to form stable logic gates.[66][67]
Physicist Mikhail Dyakonov has expressed skepticism of quantum computing as follows:
There are a number of quantum computing models, distinguished by the basic elements in which the computation is decomposed. The four main models of practical importance are:
The quantum Turing machine is theoretically important but the physical implementation of this model is not feasible. All four models of computation have been shown to be equivalent; each can simulate the other with no more than polynomial overhead.
For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):
The large number of candidates demonstrates that quantum computing, despite rapid progress, is still in its infancy.[citation needed]
Any computational problem solvable by a classical computer is also solvable by a quantum computer.[16] Intuitively, this is because it is believed that all physical phenomena, including the operation of classical computers, can be described using quantum mechanics, which underlies the operation of quantum computers.
Conversely, any problem solvable by a quantum computer is also solvable by a classical computer; or more formally, any quantum computer can be simulated by a Turing machine. In other words, quantum computers provide no additional power over classical computers in terms of computability. This means that quantum computers cannot solve undecidable problems like the halting problem and the existence of quantum computers does not disprove the ChurchTuring thesis.[95]
As of yet, quantum computers do not satisfy the strong Church thesis. While hypothetical machines have been realized, a universal quantum computer has yet to be physically constructed. The strong version of Church's thesis requires a physical computer, and therefore there is no quantum computer that yet satisfies the strong Church thesis.
While quantum computers cannot solve any problems that classical computers cannot already solve, it is suspected that they can solve certain problems faster than classical computers. For instance, it is known that quantum computers can efficiently factor integers, while this is not believed to be the case for classical computers.
The class of problems that can be efficiently solved by a quantum computer with bounded error is called BQP, for "bounded error, quantum, polynomial time". More formally, BQP is the class of problems that can be solved by a polynomial-time quantum Turing machine with an error probability of at most 1/3. As a class of probabilistic problems, BQP is the quantum counterpart to BPP ("bounded error, probabilistic, polynomial time"), the class of problems that can be solved by polynomial-time probabilistic Turing machines with bounded error.[96] It is known that BPP {displaystyle subseteq } BQP and is widely suspected that BQP {displaystyle subsetneq } BPP, which intuitively would mean that quantum computers are more powerful than classical computers in terms of time complexity.[97]
The exact relationship of BQP to P, NP, and PSPACE is not known. However, it is known that P {displaystyle subseteq } BQP {displaystyle subseteq } PSPACE; that is, all problems that can be efficiently solved by a deterministic classical computer can also be efficiently solved by a quantum computer, and all problems that can be efficiently solved by a quantum computer can also be solved by a deterministic classical computer with polynomial space resources. It is further suspected that BQP is a strict superset of P, meaning there are problems that are efficiently solvable by quantum computers that are not efficiently solvable by deterministic classical computers. For instance, integer factorization and the discrete logarithm problem are known to be in BQP and are suspected to be outside of P. On the relationship of BQP to NP, little is known beyond the fact that some NP problems that are believed not to be in P are also in BQP (integer factorization and the discrete logarithm problem are both in NP, for example). It is suspected that NP {displaystyle nsubseteq } BQP; that is, it is believed that there are efficiently checkable problems that are not efficiently solvable by a quantum computer. As a direct consequence of this belief, it is also suspected that BQP is disjoint from the class of NP-complete problems (if an NP-complete problem were in BQP, then it would follow from NP-hardness that all problems in NP are in BQP).[98]
The relationship of BQP to the basic classical complexity classes can be summarized as follows:
It is also known that BQP is contained in the complexity class #P (or more precisely in the associated class of decision problems P#P),[98] which is a subclass of PSPACE.
It has been speculated that further advances in physics could lead to even faster computers. For instance, it has been shown that a non-local hidden variable quantum computer based on Bohmian Mechanics could implement a search of an N {displaystyle N} -item database in at most O ( N 3 ) {displaystyle O({sqrt[{3}]{N}})} steps, a slight speedup over Grover's algorithm, which runs in O ( N ) {displaystyle O({sqrt {N}})} steps. Note, however, that neither search method would allow quantum computers to solve NP-complete problems in polynomial time.[99] Theories of quantum gravity, such as M-theory and loop quantum gravity, may allow even faster computers to be built. However, defining computation in these theories is an open problem due to the problem of time; that is, within these physical theories there is currently no obvious way to describe what it means for an observer to submit input to a computer at one point in time and then receive output at a later point in time.[100][101]
Read more here:
Quantum computing - Wikipedia
- Prediction: These 2 Quantum Computing Stocks Will Be the Biggest AI Winners of 2025 - Yahoo Finance - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - The Motley Fool - February 20th, 2025 [February 20th, 2025]
- Quantum Watch: 3 Quantum Computing Startups Set to Disrupt the Industry - TipRanks - February 20th, 2025 [February 20th, 2025]
- D-Wave, IonQ and Quantum Computing Stocks Pop: What's Driving the Momentum? - Benzinga - February 20th, 2025 [February 20th, 2025]
- Microsoft quantum breakthrough promises to usher in the next era of computing in 'years, not decades' - GeekWire - February 20th, 2025 [February 20th, 2025]
- Microsoft claims practical quantum computing could be ready in 'years rather than decades' with new computer chip - Fortune - February 20th, 2025 [February 20th, 2025]
- Microsoft unveils chip it says could bring quantum computing within years - The Guardian - February 20th, 2025 [February 20th, 2025]
- Microsoft created a new type of matter for its quantum computing chip - Quartz - February 20th, 2025 [February 20th, 2025]
- Kipu Quantum and IBM Introduce New Optimization Function in Qiskit Functions Catalog - Quantum Computing Report - February 20th, 2025 [February 20th, 2025]
- Microsoft reveals its first quantum computing chip, the Majorana 1 - MSN - February 20th, 2025 [February 20th, 2025]
- How Microsoft is rewriting the rules of reality with quantum computing - Interesting Engineering - February 20th, 2025 [February 20th, 2025]
- Microsoft Makes Quantum Computing Breakthrough With New Chip - The New Stack - February 20th, 2025 [February 20th, 2025]
- Should the Government Fund a Manhattan Project for Quantum Computing? - Built In - February 20th, 2025 [February 20th, 2025]
- This Quantum Computing Stock Just Announced a Key New Sales Strategy and Its First Customer - Barchart - February 20th, 2025 [February 20th, 2025]
- HPE launches slew of Xeon-based Proliant servers which claim to be impervious to quantum computing threats - TechRadar - February 20th, 2025 [February 20th, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 4% - Here's What Happened - MarketBeat - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - MSN - February 20th, 2025 [February 20th, 2025]
- The Next Big Thing in Quantum Computing: 3 Startups to Watch - PUNE.NEWS - February 20th, 2025 [February 20th, 2025]
- Quantum Computing Is Closer Than Ever. Everybodys Too Busy to Pay Attention. - The Wall Street Journal - February 14th, 2025 [February 14th, 2025]
- Practical Quantum Computing Five to Ten Years Away: Google CEO - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- Oxford scientists say they have achieved teleportation - The Independent - February 14th, 2025 [February 14th, 2025]
- D-Wave Quantum Announces Another Sale. Its a Milestone in Quantum Computing. - Barron's - February 14th, 2025 [February 14th, 2025]
- This Canadian company is out to stop the biggest quantum computing threat - The Logic - February 14th, 2025 [February 14th, 2025]
- QphoX, Rigetti, and Qblox Demonstrate Optical Readout Technique for Superconducting Qubits - Quantum Computing Report - February 14th, 2025 [February 14th, 2025]
- Quantum computing is already here, experts say - DIGITIMES - February 14th, 2025 [February 14th, 2025]
- FS-ISAC Releases Guidance to Help the Payment Card Industry Mitigate Risks of Quantum Computing - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- Quantum Corporation: Improved Results, But Still Not A Quantum Computing Play - Sell - Seeking Alpha - February 14th, 2025 [February 14th, 2025]
- Why AI firms should follow the example of quantum computing research - New Scientist - February 14th, 2025 [February 14th, 2025]
- Unlocking the Future: IonQ Revolutionizes Quantum Computing at CES 2025! - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Billionaire Bill Gates Thinks Quantum Computing Could Be Ready for Prime Time Within 3 to 5 Years. Could Nvidia Be in Trouble If He's Right? - The... - February 14th, 2025 [February 14th, 2025]
- Quantum Computing in 2025: Will the Asia Pacific Continue Its Advancement? - Telecom Review Asia - February 14th, 2025 [February 14th, 2025]
- Is D-Wave the Future of Computing? Discover the Quantum Leap! - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Revolutionizing Computing: The Rise of D-Wave! The Future of Quantum Technology - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Quantum computing startup OQT announced on the 13th that it has attracted 3 billion won worth of see.. - - February 12th, 2025 [February 12th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- 3 Top-Rated Quantum Computing Stocks To Buy In February 2025 - Barchart - February 12th, 2025 [February 12th, 2025]
- Quantum Computing Breakthrough Brings Us Closer to Universal Simulation - SciTechDaily - February 12th, 2025 [February 12th, 2025]
- Allston quantum computing firm plans to nearly double workforce - The Boston Globe - February 12th, 2025 [February 12th, 2025]
- Quantum Computing: A Beginners Guide to Understanding the Next Revolution - TipRanks - February 12th, 2025 [February 12th, 2025]
- Want to Invest in Quantum Computing? 1 Stock That Is a Great Buy Right Now. - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- 2 Top Quantum Computing Stocks to Buy in February - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- Oxford quantum teleportation breakthrough brings scalable quantum computing closer to reality - Innovation News Network - February 12th, 2025 [February 12th, 2025]
- Preparing for a Quantum Computing Nightmare on the Stock Exchange: What Is Q-Day? - TipRanks - February 12th, 2025 [February 12th, 2025]
- Are Quantum Computing Stocks Worth The Investment? - Seeking Alpha - February 12th, 2025 [February 12th, 2025]
- 7 Best Quantum Computing Stocks to Buy in 2025 | Investing - U.S News & World Report Money - February 12th, 2025 [February 12th, 2025]
- Quantum computing will bring lost Bitcoin 'back in circulation Tether CEO - Cointelegraph - February 12th, 2025 [February 12th, 2025]
- Tether CEO predicts quantum computing could recover lost Bitcoin - crypto.news - February 12th, 2025 [February 12th, 2025]
- Tether CEO Paolo Ardoino Says Quantum Computing Will Allow Hackers To Take Bitcoin From Lost Wallets - The Daily Hodl - February 12th, 2025 [February 12th, 2025]
- Quantum computing wont kill Bitcoin but it might unlock Satoshis wallet, says Tether CEO - DLNews - February 12th, 2025 [February 12th, 2025]
- Partnership Delivers Scalable Quantum Computing with QEC Capability - EE Times - February 7th, 2025 [February 7th, 2025]
- PsiQuantum and Microsoft Selected to Move on to the Final Validation and Co-Design Stage of DARPAs Underexplored Systems for Utility-Scale Quantum... - February 7th, 2025 [February 7th, 2025]
- Google targets commercial quantum computing within five years - Dig Watch Updates - February 7th, 2025 [February 7th, 2025]
- Googles Quantum Computing Chief Challenges Nvidias Jensen Huangs 20-Year Timeline: 'Within Five Years Well See Real-World Applications That Are... - February 7th, 2025 [February 7th, 2025]
- Quantum Leap or Market Mirage? D-Wave Stock and the Future of Computing - Mi Valle - February 7th, 2025 [February 7th, 2025]
- The Promises and Pitfalls of Quantum Computing in Chicago - Illinois Answers Project - February 7th, 2025 [February 7th, 2025]
- Quantum Computing in Smaller Bytes, Thanks to Fordham Students Invention - Fordham University - February 7th, 2025 [February 7th, 2025]
- Is IonQ the Golden Ticket in Quantum Computing or Just a Risky Gamble? - Jomfruland.net - February 7th, 2025 [February 7th, 2025]
- Is IonQ the Future of Quantum Computing or Just a Risky Gamble? - Jomfruland.net - February 7th, 2025 [February 7th, 2025]
- D-Wave, Quantum Computing, and Rigetti Stock Slip on Trade War Fears - Barron's - February 7th, 2025 [February 7th, 2025]
- Discover the Next Wave of Quantum Computing Shares: Are They Worth the Investment? - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Unlocking the Future: How Rigetti, IonQ, and D-Wave Are Pioneering Quantum Computing - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Discover the Next Wave of Quantum Computing Stocks: Are They Worth the Investment? - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Google says commercial quantum computing applications arriving within five years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - Reuters - February 5th, 2025 [February 5th, 2025]
- The necessary next step for quantum and high-performance computing is sustainability, Northeastern experts say - Northeastern University - February 5th, 2025 [February 5th, 2025]
- Bill Gates: There's a possibility quantum computing will become useful in 3 to 5 years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google Bets on Quantum Computing, Aims for Commercial Use in Five Years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Quantum Computing Stocks Tumbled in January. Should You Buy the Dip? - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Bill Gates Predicts Useful Quantum Computing Is 3 to 5 Years Away - IoT World Today - February 5th, 2025 [February 5th, 2025]
- Intel (NASDAQ:INTC), Japanese Government Working Together on Quantum Computing Development - TipRanks - February 5th, 2025 [February 5th, 2025]
- Interested in Investing in Quantum Computing Stocks? Here's a No-Brainer Buy. - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Quobly Opens a New Quantum Chip Test/Characterization Facility and Expanded Offices - Quantum Computing Report - February 5th, 2025 [February 5th, 2025]
- SEALSQ (LAES) Invests $20M in AI and Quantum Computing Startups - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google says quantum computing applications are five years away - Digital Trends - February 5th, 2025 [February 5th, 2025]
- Google (GOOGL) Aims to Release Commercial Quantum Computing Apps Within Five Years - TipRanks - February 5th, 2025 [February 5th, 2025]
- Quantum Leap: Is Rigetti Computing the Next Tech Sensation? - Jomfruland.net - February 5th, 2025 [February 5th, 2025]
- Google Bets on Quantum Computing, Aims for Commercial Use in Fiv - GuruFocus.com - February 5th, 2025 [February 5th, 2025]
- Quantum Computing at the BMW Group. - BMW Group - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - TradingView - February 5th, 2025 [February 5th, 2025]
- D-Wave Launches "Quantum Realized" Brand Campaign to Illustrate Benefits of Todays Quantum Computing - Yahoo Finance - February 5th, 2025 [February 5th, 2025]