Quasiparticle poisoning in superconducting quantum computers … – American Institute of Physics
Although quantum computing is still in its infancy relative to the classical computing technology that weve come to know, love, and rely on, rapid advances over the past decade have taken it from the realm of science fiction to a probable reality of the not-so-distant future. Instead of manipulating bits of information by operating millions of transistors, a quantum computer relies on the precise control of many quantum subsystemsindividual quantum bits, or qubitsalong with an accurate readout of their quantum states. Many promising physical qubit platforms, such as trapped ions, neutral atoms, and solid-state defects (see the article by Christopher Anderson and David Awschalom on page 26), are based on building blocks that are typically thought of as archetypes of quantum behavior.
One of the leading candidate platforms for a useful quantum processor, however, is constructed from components that dont evoke a picture of tiny, microscopic particles with exotic properties. Instead, it consists of superconducting wires, capacitors, and inductors patterned on chips akin to existing semiconductor technologies. Those electronic circuits, which make up the superconducting qubit platform, embody many of the desirable properties of their atomic counterparts and have become the focus of several high-profile quantum computing effortsled by both large companies, such as IBM, Google, and Alibaba, and startups, including Rigetti Computing, IQM, Alice & Bob, Oxford Quantum Circuits, and Quantware.1 Those companies are leveraging modern clean-room fabrication tools to more easily engineer complex circuits with fast control.
In developing any quantum computing platform, a fundamental challenge arises from the tension between preserving quantum information and manipulating it: The former requires that qubits be isolated from their environment, while the latter demands that they have precise interactions with it. In fact, the key metrics for any platform can be summarized by the probability that an error will occur during a calculation and the time it will take to complete that calculation.
Currently, researchers looking at superconducting qubits are focusing on the error probability, which can be thought of as the ratio of how fast the qubit can be controlled to the rate at which it loses information to its environment. Of the primary mechanisms that are currently limiting superconducting qubit performance, one of the most intriguing and difficult to control is quasiparticle poisoningthe presence of charge carriers that do not participate in the superconducting condensate.
Quantum effects are often weak and hard to observe in objects visible to the human eye. (For example, see Physics Today, July 2023, page 16.) So how is it that superconducting devices that are constructed from such circuit elements as inductors and capacitors and contain on the order of 1015 atoms behave quantum mechanically? As first shown by John Martinis, Michel Devoret, and John Clarke in 1987, a macroscopic degree of freedom can exhibit quantum behavior provided that energy dissipation is negligible and that the temperature of the system is low.
Thus the first ingredient to build a quantum circuit is to avoid energy dissipation, which leads to information loss. Thats why circuit components are fabricated with superconducting materials. They can carry direct current without any resistance because the relevant charge carrierselectrons and holes near the Fermi energypartner into Cooper pairs and condense into a macroscopic coherent state, as explained by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity (see the article by Warren Pickett and Mikhail Eremets, Physics Today, May 2019, page 52). The condensate can be described by a complex-valued order parameter, the phase of which is critical to describe the physics of superconducting qubits.
Dissipationless transport is possible not only within bulk superconductors but also between two connected superconductors separated by whats called a weak link. The most widely used type of weak link is a tunnel barriera thin oxide layer separating two superconducting electrodes to form a Josephson junction. Importantly, Josephson junctions behave as nonlinear inductors: They lie at the heart of superconducting qubits, and the difference in the phase of the order parameter between the superconductors they connect is exactly the macroscopic degree of freedom that was shown to exhibit quantum behavior. In practice, aluminum is the superconductor of choice for Josephson junctions because its compatible with relatively standard nanofabrication techniques and has a self-limiting few-nanometers-thick oxide at its surface, which is used for the junction barrier.
The design flexibility of superconducting circuits originates from the many possible ways of combining the three basic circuit elementscapacitors, linear inductors, and nonlinear inductors (Josephson junctions), which all have parameters that can be tuned over a wide range. Is there a price to pay for such flexibility? Depending on how the components are arranged, quantum information can be encoded into the charge or the phase difference between superconducting condensates or as a combination of the two. The encoding methods hint at what can go wrong: The charge, the phase, or even the superconducting condensate itself can be disrupted.
Broadly speaking, the environmental effects acting on the charge or phase are known as charge noise and flux noise, respectively. They arise from materials defects and imperfections on the surface of the superconductor, at the interface with the substrate, in the oxide forming the Josephson junction, and in the substrate itself. At the microscopic scale, the sources of charge noise and flux noise arise from random changes in the configurations of charges and electron or nuclear spins.2
Another decoherence mechanism affecting charge and phase arises from the interaction of the superconductor with the electromagnetic environment: Like any other resonant electric circuit, a superconducting qubit can lose energy by emitting a photon. Thats easy to visualize for the simplest superconducting qubit, called a transmon. Consisting of a Josephson junction in parallel with a capacitor, a transmon can be thought of as a nonlinear dipole antenna, which absorbs and emits photons at some characteristic frequency.
In contrast to the decoherence mechanism described above, the superconducting condensate can be directly disturbed by the environment via the breaking of Cooper pairs, a process that generates quasiparticle excitations in the superconductor itself. Cooper pairs comprise two electrons with opposite spin and momentum, and superconductivity results from the coherent superposition of the underlying many-body momentum states, which are either pair-occupied (electrons) or pair-unoccupied (holes), as illustrated in figure 1.
Figure 1.
Quasiparticle excitations in superconductors. (a) In the ground state of a normal metal, spin-degenerate electrons (blue) occupy states with energy up to the Fermi level F. (b) The ground state of a Bardeen-Cooper-Schrieffer superconductor consists of a coherent superposition of all possible configurations of states, which have pair-correlated electron occupation in an energy window around the Fermi level. For simplicity, panels a and b neglect degeneracy or correlation in the momentum of the electrons. (c) When a phonon or photon with energy greater than 2 couples to the superconductor, the generated pair of quasiparticles poisons the superconductor: The two states the quasiparticles occupy (purple region) are fixed and dont participate in the coherent superposition of the superconducting condensate. (Adapted from ref. 9.)
Figure 1.
Quasiparticle excitations in superconductors. (a) In the ground state of a normal metal, spin-degenerate electrons (blue) occupy states with energy up to the Fermi level F. (b) The ground state of a Bardeen-Cooper-Schrieffer superconductor consists of a coherent superposition of all possible configurations of states, which have pair-correlated electron occupation in an energy window around the Fermi level. For simplicity, panels a and b neglect degeneracy or correlation in the momentum of the electrons. (c) When a phonon or photon with energy greater than 2 couples to the superconductor, the generated pair of quasiparticles poisons the superconductor: The two states the quasiparticles occupy (purple region) are fixed and dont participate in the coherent superposition of the superconducting condensate. (Adapted from ref. 9.)
Picturing quasiparticles as broken Cooper pairs gives an idea of what they actually are. In a normal metal, electrons occupy various energy levels in a so-called Fermi sea, and when an electron is removed, whats left is a hole excitation. When removing an electron that was part of a Cooper pair, whats left is a coherent superposition of an electron and a hole, known as a Bogoliubov quasiparticle.
Whereas any small amount of energy is sufficient to generate an electron and a hole in a normal metal, it takes a finite energy, denoted as 2, to break a Cooper pair. That energy, known as the superconducting gap, is proportional to the critical temperature Tc at which the superconductivity disappears: 1.76 kBTc for well-behaved BCS superconductors, such as aluminum. Because of the energy gap, at low temperature the thermally activated number of quasiparticles, which can be quantified as the fraction xQP of broken Cooper pairs, should be exponentially small, xQP ~ exp(/kBT). For aluminum at about 20 mKthe temperature at which aluminum-based superconducting qubits are typically operatedxQP is expected to be about 1046, which is so small that in an Earth-sized block of superconducting aluminum, one would expect to find only two thermally excited quasiparticles. Unfortunately, as we will describe later, observed values of xQP are much larger than expected.
So what happens if quasiparticles are present in a superconducting circuit? In bulk superconductors, theyre responsible for finite AC dissipation proportional to xQP. In qubit circuits comprising Josephson junctions, the situation is more complex. When a quasiparticle tunnels from one side of a junction to the other, its coupling to the phase difference across that junction makes it possible for the quasiparticle to absorb energy from the qubit, causing the qubit to decay. Similar to the dissipative response of bulk superconductors, the decay rate is proportional to xQP. Even if the quasiparticle does not absorb energy, when it tunnels it can make the qubit frequency fluctuate, which leads to dephasing and a reduction of the qubits coherence time. Both energy decay and dephasing originate from the dependence of the tunneling amplitude on the phase difference and have been investigated in a number of theoretical and experimental works (see references 3 and 4 and references therein).
The decoherence mechanisms are generic to any superconducting qubit made with junctions, but different qubit designs have different sensitivities. In fact, qubits with junctions embedded in a superconducting loop can be tuned by threading a magnetic flux through that loop, and the sensitivity to quasiparticles can be suppressed at particular flux values known as sweet spots. The suppression is an interference effect that manifests the nature of quasiparticles as a coherent superposition of electron- and hole-like excitations. At the sweet spots, the sensitivity to flux noise is also minimized, making them by far the preferred operating point for such qubits.
As mentioned above, no thermally excited quasiparticles should be present at temperatures sufficiently below Tc. Aluminum circuits with Tc = 1.2 K and at dilution refrigerator temperatures of 10 mK should be completely free of quasiparticles. So why worry about them at all?
In the 1990s several groups studied a class of superconducting charge-sensitive circuits that leveraged the so-called Coulomb blockade effect. In those devices, one or more submicrometer-scale superconducting islands were weakly coupled to connected electrodes by Josephson junctions. Importantly, the small size of the islands and junctionstypically no larger than 100 nm 100 nmfixed the islands total capacitance C to less than a femtofarad. At that level, the corresponding charging energy for adding a single Cooper pair, EC = 2e2/C, where e is the electron charge, could easily exceed 1023 J, or 1 K in temperature units.
In that parameter regime, the critical current and other electronic properties were sensitive to the addition or subtraction of single Cooper pairs and quasiparticles. Although quasiparticles do not have definite charge, when they tunnel on or off a superconducting island, the total charge on that island is shifted by the discrete value e.
One of the simplest Coulomb blockade circuits is the single Cooper-pair transistor.5 As shown in figure 2, the device has two small Josephson junctions that isolate a single superconducting island from superconducting leads, and a capacitively coupled gate electrode is placed nearby. In that configuration, the two junctions behave effectively as a single Josephson junction. Its critical currentthe maximum current that the junction can carry while keeping the voltage across the junction close to zeromodulates with an applied gate voltage. Ideally, the modulation is a 2e-periodic function of the gate charge qg = CgVg (where Cg is the gate capacitance to the island, and Vg is the gate voltage) and reflects the size of the Cooper-pair charge itself. As noted above, the presence of quasiparticles in the leads provides a source for single electrons to tunnel onto the island and offset the islands charge by an electron, which concomitantly shifts the current modulation by 1e.
Figure 2.
Superconducting circuit. (a) A Cooper-pair transistor circuit features two small Josephson junctions that isolate a submicron-scale superconducting island (red). (b) An odd parity state (blue) corresponds to an excess electron on the island, and an even parity state (green), to no excess electron. The effective critical current through the island modulates with an applied gate voltage Vg that corresponds to a change in the energy cost of placing additional Cooper pairs on the island. (c) The switching current, which is closely related to the critical current, has a value at a given gate voltage that reflects the presence or absence of quasiparticles poisoning the island charge state. The dips at 1e indicate that single quasiparticles occupy the island more often than not (top). The opposite (bottom) is true when the relative gap energy of the superconducting island and superconducting lead is inverted. (Adapted from ref. 5.)
Figure 2.
Superconducting circuit. (a) A Cooper-pair transistor circuit features two small Josephson junctions that isolate a submicron-scale superconducting island (red). (b) An odd parity state (blue) corresponds to an excess electron on the island, and an even parity state (green), to no excess electron. The effective critical current through the island modulates with an applied gate voltage Vg that corresponds to a change in the energy cost of placing additional Cooper pairs on the island. (c) The switching current, which is closely related to the critical current, has a value at a given gate voltage that reflects the presence or absence of quasiparticles poisoning the island charge state. The dips at 1e indicate that single quasiparticles occupy the island more often than not (top). The opposite (bottom) is true when the relative gap energy of the superconducting island and superconducting lead is inverted. (Adapted from ref. 5.)
Many experimentalists therefore regarded a 1e-periodic modulation to be indicative of the presence of quasiparticles. Indeed, one could turn a 2e-periodic modulation into a 1e-periodic modulation just by heating up the device to a few hundred millikelvin to create an abundance of thermally generated quasiparticles. It was common, however, to see 1e-periodic modulation at much lower temperatures, even when controlling for other known causes of the behavior. Its known as quasiparticle poisoning, and its sporadic presence in some, but not all, devices was one of the first indications that the physics of quasiparticles was not fully understood.
Using a higher-speed DC measurement technique in the early 2000s, one of us (Aumentado) found evidence for quasiparticles at dilution-refrigerator temperatures, even in 2e-periodic devices. The results showed that the tunneling of nonequilibrium quasiparticles on and off the island was sensitive to both gate voltage and the relative gap energies of the island and leads. Single Cooper-pair transistors share many things in common with todays superconducting qubit circuits, including the junction sizes and material choice of aluminum, and perhaps thats why its not surprising that the basic phenomenon of nonequilibrium quasiparticle poisoning has persisted to the present day.
To probe the dynamics of nonequilibrium quasiparticles in superconducting qubits and test our understanding of quasiparticle poisoning, researchers have used many approaches over the years. For example, one can purposely add quasiparticles by increasing the systems temperature and then measuring such properties as the relaxation time T1 (typically tens to hundreds of microseconds) and the qubit frequency 10 (a few gigahertz). Both those properties decrease when quasiparticles are present.6
Alternatively, nonequilibrium quasiparticles can be injected directly without raising the system temperature, and the expected relation between changes in T1 and 10 can be checked.7 In fact, researchers have exploited the proportionality between 1/T1 and the quasiparticle density xQP to monitor the dynamics of xQP, and they have assessed to what extent quasiparticles were trapped by supercurrent vortices.8 Such experiments also make it possible to place bounds on the density of nonequilibrium quasiparticles and to estimate their generation rate.
A more direct measure of quasiparticle effects in qubits is similar to the initial observations of 1e periodicity in single Cooper-pair transistors.5 By explicitly reintroducing some charge sensitivity into a transmon circuit, researchers detected quasiparticle-induced errors via a correlated change in the oddeven charge parity of the circuit over a time QP (see reference 9 and references therein). From those experiments, its clear that modern-day superconducting qubits are still plagued by nonequilibrium quasiparticle poisoning.
Once physicists accepted that nonequilibrium quasiparticles were present in their superconducting devices, a simple question remained: Why? The answer boils down to the erroneous assumption that everything a qubit sees is perfectly isolated from the outside world and well-thermalized to the coldest stage of the cryostat. For low-noise experiments with superconducting qubits, researchers take a lot of care to filter and shield any unwanted noise. But qubits arent ever completely sheltered. All it takes to produce a pair of quasiparticles in an otherwise isolated superconductor is an excitation with an energy greater than 2, which for commonly used thin aluminum films corresponds to approximately 100 GHz, 5 K, or 400 eV, depending on the preferred choice of units. Thats not a lot of energy!
The many years that researchers have spent developing superconducting detectors have led to valuable insights into the dynamics of nonequilibrium quasiparticles. Figure 3 summarizes how all sorts of bad actors, including stray IR photons, mechanical vibrations of the device, andmost troubling of allionizing radiation from radioactive decay products and cosmic-ray secondary particles generate quasiparticles in qubits.
Figure 3.
Quasiparticle dynamics. A Josephson junction, formed by a superconductor-insulator-superconductor heterostructure, is shown in cross section. Quasiparticles (purple) can undergo various inelastic processes. Some tunnel across the Josephson junction (yellow) and others are generated during photon-assisted tunneling of Cooper pairs (orange). Both processes can cause energy exchange between the quasiparticles and a qubit formed in part from the junction. Ionizing radiation can create in the substrate electronhole pairs (red), which emit showers of phonons (pink) as they relax. Phonons with an energy of 2 or greater are sufficiently energetic to break Cooper pairs; freshly created quasiparticles in the device then lead to spatiotemporally correlated errors. Quasiparticles can also recombine and emit a phonon with energy greater than 2 (dark green).
Figure 3.
Quasiparticle dynamics. A Josephson junction, formed by a superconductor-insulator-superconductor heterostructure, is shown in cross section. Quasiparticles (purple) can undergo various inelastic processes. Some tunnel across the Josephson junction (yellow) and others are generated during photon-assisted tunneling of Cooper pairs (orange). Both processes can cause energy exchange between the quasiparticles and a qubit formed in part from the junction. Ionizing radiation can create in the substrate electronhole pairs (red), which emit showers of phonons (pink) as they relax. Phonons with an energy of 2 or greater are sufficiently energetic to break Cooper pairs; freshly created quasiparticles in the device then lead to spatiotemporally correlated errors. Quasiparticles can also recombine and emit a phonon with energy greater than 2 (dark green).
IR photons can leak into the experimental region of a cryostat, despite the best attempts to block or shield from them. Many popular cryogenic systems, including dilution refrigerators, consist of multiple temperature stages. Similar to a set of nested matryoshka dolls, a metal shield at each stage protects the next from the surrounding, hotter stage (see figure 4). The innermost shield should be thermalized to the lowest-temperature stage of the cryostat. Experiments with superconducting resonators, however, indicated that more shielding was needed: Some photons from higher-temperature stages can get through and reduce device performance.10 Coating the experiment with IR-absorbing material is one remedy. Its the same principle thats used when painting stealth aircraft.
Figure 4.
Superconducting qubit experiments often use dilution refrigerators with nested temperature stages. Each stage includes a metallic shield that blocks blackbody radiation from higher-temperature stages. Gamma rays and cosmic-ray muons, however, can penetrate through that shielding, sometimes hitting the superconducting quantum processor and creating spatiotemporally correlated, quasiparticle-induced errors.
Figure 4.
Superconducting qubit experiments often use dilution refrigerators with nested temperature stages. Each stage includes a metallic shield that blocks blackbody radiation from higher-temperature stages. Gamma rays and cosmic-ray muons, however, can penetrate through that shielding, sometimes hitting the superconducting quantum processor and creating spatiotemporally correlated, quasiparticle-induced errors.
Researchers recently discovered that the qubit itself can act as an antenna that enhances the production of quasiparticles via absorption of IR radiation.11 The absorption process is localized at the Josephson junctions of a qubit circuit; in addition to qubit relaxation, the process can explain recent observations of especially large qubit excitation rates.9 Experiments have since demonstrated that the process does indeed contribute to quasiparticle generation and qubit excitation and that the process can be suppressed by improved filtering of the microwave lines feeding signals to the qubits and by proper design of the qubit and its surroundings.9,12 Those improvements can lengthen by several orders of magnitude the time between quasiparticle tunneling events, from shorter than a millisecond to longer than a second.
Ionizing radiation is known to also produce quasiparticles in superconducting devices, and in many cases thats the desired effect. So-called pair-breaking detectors, such as microwave kinetic inductance detectors and transition-edge sensors, operate on the principle that ionizing radiation and other excitations deposit large amounts of energy into the crystalline device substrate in the form of ionized charge carriers and showers of high-energy phonons. In superconducting detectors, the phonons can produce quasiparticles, whose presence is inferred from a change in an observable parameter, such as kinetic inductance or critical current.
Although superconducting qubits are similar in construction to those types of detectors, it was only in hindsight that researchers realized that superconducting qubits could also act as detectors of ionizing radiation, with detection events translating into computational errors. Ionizing radiation reduces the performance of qubits.13 Some of it, primarily rays, can be shielded by lead, but to cut down on the flux of pesky cosmic-ray muons, one needs to use the overburden of Earths crust or to go deep underwater.14
The mechanism of quasiparticle production via cosmic-ray muons is particularly worrisome because about every 10 seconds a muon can generate bursts of quasiparticles throughout a device and knock out many nearby qubits simultaneously.15 Similar bursts were recently linked to mechanical relaxation of superconducting devices over the time scale of days. The link could explain an earlier observation of a slow decay in the generation rate over the course of an experiment. Those types of quasiparticle-induced spatiotemporally correlated errors are difficult to deal with in many quantum error-correction schemes, although they can be addressed if theyre detected independently and if qubits likely to have been affected by errors can be excluded from further computation.16
Qubit performance has improved by several orders of magnitude in the 25 years since the first demonstration of coherence in a superconducting qubit, but there is still a long road ahead. The consensus in the research community is that quantum error-correction techniques will be necessary to maintain complex multiqubit-state information for the duration of a useful computation. In such schemes, logical qubits are encoded in the combined state of many error-prone qubits, and higher error rates translate into stricter requirements on the total number of physical qubits.
An underlying assumption typical of quantum error-correction schemes is that physical errors are random. Using that thinking, researchers have steadily chipped away at the background population of nonequilibrium quasiparticles and suppressed their steady-state contribution to qubit errors to a sufficient level over time. But that assumption is violated by the aforementioned error bursts that arise from quasiparticles generated by ionizing radiation.
Luckily, there are many proposedand some demonstratedpaths toward mitigating catastrophic error bursts. Having quasiparticles around is ok, so long as they dont tunnel across a qubits Josephson junction. That could be achieved by using a superconductor for the ground plane with a smaller energy gap than the qubit superconductor or by adding normal-metal islands to the back of the chip.17 Those design changes bring the energy of the phonons generated by radiation hits to below the gap of the qubit material, so that they cannot break Cooper pairs anymore. The few quasiparticles that are still generated in the qubit bulk can be kept away from the qubits junctions by employing quasiparticle traps9,18 or blocked from tunneling at the junctions via gap engineering.5
While those on-chip techniques are effective for many sources of quasiparticles, pesky cosmic-ray secondary particles such as muons are not effectively shielded except by massive amounts of material, which has led some scientists to suggest that underground facilities are critical to avoiding spatiotemporally correlated error bursts. Luckily for experimentalists who enjoy sunlight, there is hope that on-chip mitigation strategies could be combined with tungsten or lead shielding to provide sufficient protection. But such radiation-hardened superconducting qubits have yet to be fully demonstrated.
Nonequilibrium quasiparticles might sound like a bogeyman lurking in the shadows of superconducting quantum computing efforts, but they are just another item in the list of engineering and scientific challenges that must be met to make quantum computing a robust reality. There are many reasons to be optimistic: Recent research efforts have given more insight into quasiparticles generation mechanisms and have provided a clear direction for future mitigation efforts.
Read this article:
Quasiparticle poisoning in superconducting quantum computers ... - American Institute of Physics
- Prediction: This Stock Will Be the Biggest Quantum Computing Winner of 2025 - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Schrdinger's Cat breakthrough could usher in the 'Holy Grail' of quantum computing, making them error-proof - Livescience.com - January 19th, 2025 [January 19th, 2025]
- Here's Some Reassuring News for Anyone Invested in Quantum Computing Stocks - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- What is the future of quantum computing going to look like? - opinion - The Jerusalem Post - January 19th, 2025 [January 19th, 2025]
- What Is Quantum Computing? And Should You Be Investing In It? - Investor's Business Daily - January 19th, 2025 [January 19th, 2025]
- 2 Quantum Computing Stocks That Could Be a Once-in-a-Lifetime Opportunity - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Quantum Computing vs. Traditional AI: Which Tech Stocks Are Must-Haves in 2025? - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Should You Buy Quantum Computing Stock While It's Below $15? - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Why Quantum Computing Stock IonQ Surged Higher This Week - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Why Rigetti Computing, IonQ, D-Wave Quantum, and Quantum Computing Stocks All Exploded Higher on Wednesday - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Miami University and Cleveland Clinic announce partnership to advance education in quantum computing - The Miami Student - January 19th, 2025 [January 19th, 2025]
- Interested in Quantum Computing? You Might Want to Hear What Nvidia's CEO Just Said About It - The Motley Fool - January 19th, 2025 [January 19th, 2025]
- Quantum-computing stocks could be rich takeover targets. Heres what to know. - MarketWatch - January 19th, 2025 [January 19th, 2025]
- D-Wave and Quantum Computing Stocks Are on the Rise. What You Should Know. - Barron's - January 19th, 2025 [January 19th, 2025]
- Jim Cramer Eyes Quantum Computing Stocks Like Rigetti, Warns Against Super Micro Computer: 'They Are Trying So Hard To Walk It Up Now' - Yahoo Finance - January 19th, 2025 [January 19th, 2025]
- Here's Some Reassuring News for Anyone Invested in Quantum Computing Stocks - MSN - January 19th, 2025 [January 19th, 2025]
- Quantum Computing vs. Traditional AI: Which Tech Stocks Are Must-Haves in 2025? - MSN - January 19th, 2025 [January 19th, 2025]
- The Blockchain Industry Cant Afford Complacency in Preparing for Quantum Computing - Blockhead - January 19th, 2025 [January 19th, 2025]
- Rigetti and D-Wave: Top Analyst Chooses the Best Quantum Computing Stocks to Buy - TipRanks - January 19th, 2025 [January 19th, 2025]
- Quantum Computing: The Next Big Thing? Investors Are Watching Closely! - Jomfruland.net - January 19th, 2025 [January 19th, 2025]
- Quantum Computing in Healthcare Overview and Leading Players: - openPR - January 19th, 2025 [January 19th, 2025]
- Interested in quantum computing investments? Hear what Nvidia's CEO just said about it - USA TODAY - January 19th, 2025 [January 19th, 2025]
- Quantum Computing: The Next Big Thing or Just Hype? - Jomfruland.net - January 19th, 2025 [January 19th, 2025]
- Miami University and Cleveland Clinic Announce Partnership to Advance Education in Quantum Computing - Cleveland Clinic Newsroom - January 15th, 2025 [January 15th, 2025]
- Quantum computing stocks rebound after massive sell-off as industry exec says opportunity is 'real' - Yahoo Finance - January 15th, 2025 [January 15th, 2025]
- D-Wave Partners with Carahsoft to Provide Quantum Computing Solutions for the Public Sector - The Quantum Insider - January 15th, 2025 [January 15th, 2025]
- Miami University And Cleveland Clinic Announce Partnership to Launch Specialized Quantum Computing Degree Program - The Quantum Insider - January 15th, 2025 [January 15th, 2025]
- Quantum computing stocks soar after Nvidia and Meta CEOs tanked them - Yahoo Finance - January 15th, 2025 [January 15th, 2025]
- Are Quantum Computing Stocks a Buy in January? - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- Jim Cramer Eyes Quantum Computing Stocks Like Rigetti, Warns Against Super Micro Computer: 'They Are Trying So Hard To Walk It Up Now' - Benzinga - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Stocks Roar Back to Life. Time to Buy? - 24/7 Wall St. - January 15th, 2025 [January 15th, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - January 15th, 2025 [January 15th, 2025]
- D-Wave Partners with Carahsoft to Bring Quantum Computing to U.S. Government Agencies - StockTitan - January 15th, 2025 [January 15th, 2025]
- Quantum computing applications are 'real today': D-Wave CEO - Yahoo Finance - January 15th, 2025 [January 15th, 2025]
- Nvidia's Jensen Huang and Meta's Mark Zuckerberg Pour Cold Water on Quantum Computing Hype. Here's 1 Stock to Buy Anyway. - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- Mark Zuckerberg joined Nvidia's CEO in doubting quantum computing and the stocks plunge again - Quartz - January 15th, 2025 [January 15th, 2025]
- Why Shares of Quantum Computing Stocks D-Wave Quantum, Quantum Computing, and Rigetti Computing Were Plunging Again Today - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- Expert: The Nvidia-Driven Selloff in Quantum Computing Stocks Is a Reason to Double Down on These 4 Names - Barchart - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Stocks Collapse: Here's Why - The Motley Fool - January 15th, 2025 [January 15th, 2025]
- NVIDIA Announces First-Ever Quantum Day At GTC 2025, Days After Jensen Huang Said Quantum Computing Is 20 Years Away - Benzinga - January 15th, 2025 [January 15th, 2025]
- SAP CEO Sees Huge Quantum Computing Impact In 3 To 4 Years - Investor's Business Daily - January 15th, 2025 [January 15th, 2025]
- MIT sets world record with 99.998% fidelity in quantum computing breakthrough - Interesting Engineering - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Stocks Jump On D-Wave, Carahsoft Partnership - Yahoo! Voices - January 15th, 2025 [January 15th, 2025]
- IonQ and Rigetti: Top Analyst Chooses the Best Quantum Computing Stocks to Buy - TipRanks - January 15th, 2025 [January 15th, 2025]
- Scientists Create Split-Electrons, Unlocking the Future of Quantum Computing - SciTechDaily - January 15th, 2025 [January 15th, 2025]
- Quantum Computing Can Be Brought to the Masses, if It Is Decentralized - CCN.com - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Specialist IonQ (IONQ) May Have Reached The End Of The Road - Barchart - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - Fortune - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Sink as Nvidia CEO Says Tech Is 15 to 30 Years Away - Investopedia - January 9th, 2025 [January 9th, 2025]
- Why Quantum Computing Stocks Rigetti Computing, Quantum Computing, and D-Wave Computing All Plunged Today - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum Computing Stocks Crashed -- Here's Why - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jen-Hsun Huang's simple reminder that useful quantum computing is a long way off has somehow caused industry stocks to plummet - PC Gamer - January 9th, 2025 [January 9th, 2025]
- How Quantum Computing Could Advance One Health - Impakter - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks are having a rough start to 2025: IonQ, D-Wave, Rigetti tank after Nvidia CEO predicts 20-year horizon - Fast Company - January 9th, 2025 [January 9th, 2025]
- Quantum Computing, Inc. Announces Private Placement of Common Stock for Proceeds of $100 Million - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- 2025 will see huge advances in quantum computing. So what is a quantum chip and how does it work? - The Conversation - January 9th, 2025 [January 9th, 2025]
- Nvidia CEO Jensen Huang just tanked quantum-computing stocks after saying their most exciting developments are more than a decade away - AOL - January 9th, 2025 [January 9th, 2025]
- Collaboration to explore the use of graphene technology in quantum computing - The Manufacturer - January 9th, 2025 [January 9th, 2025]
- Quantum computing stocks tumble after Nvidia boss Jensen Huang says the tech is still 20 years away - Markets Insider - January 9th, 2025 [January 9th, 2025]
- Want to Buy a Quantum Computing Stock in 2025? You Might Consider This Quantum Computing ETF. - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Ride the Quantum Computing Wave with These 2 Stocks: RGTI, QBTS - Yahoo Finance - January 9th, 2025 [January 9th, 2025]
- Shaping the Future of Quantum Computing in the United Arab Emirates (UAE) - Quantum Computing Report - January 9th, 2025 [January 9th, 2025]
- How Nvidia CEO Jensen Huang's one sentence wiped out $8 billion in market cap of quantum computing compan - The Times of India - January 9th, 2025 [January 9th, 2025]
- Will This Quantum Computing Stock Be a Must-Own in 2025? - The Motley Fool - January 9th, 2025 [January 9th, 2025]
- Quantum-computing stocks tumble on Nvidia CEOs comment that theyre decades away from being very useful - Sherwood News - January 9th, 2025 [January 9th, 2025]
- Analyzing Quantum Computing Has Been The Most Challenging Project In My Career (NASDAQ:QUBT) - Seeking Alpha - January 3rd, 2025 [January 3rd, 2025]
- Norma and Mabel Quantum Partner to Launch Integrated Quantum Computing System in Korea - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- How Microsoft and Partners are Shaping the Future of Quantum Computing - The Quantum Insider - January 3rd, 2025 [January 3rd, 2025]
- One Quantum Computing ETF to Buy Hand Over Fist as Googles Willow Supercharges the Market - Barchart - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram Inc. Develops Semiconductor Quantum Dot Hole Spin Qubit Technology, Advancing the Frontiers of Quantum Computing - Yahoo Finance - January 3rd, 2025 [January 3rd, 2025]
- Quantum Applications in the Automotive Industry - Quantum Computing Report - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer Warns 'Day Is Not Near Enough To Justify The Current Valuations' Of Quantum Computing, Nuclear Power Stocks - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- MicroCloud Hologram's Stock Surges 31% on Quantum Computing Breakthrough: What This Means for the Future of Tech - The Africa Logistics - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Stocks Like Rigetti Computing Are Soaring And This ETF Lets Investors Participate In The Boom Story - Benzinga - January 3rd, 2025 [January 3rd, 2025]
- Future Industry Growth Of Commercial Quantum Computing - openPR - January 3rd, 2025 [January 3rd, 2025]
- GCAN to Explore Strategic Alternatives in Artificial Intelligence and Quantum Computing - GlobeNewswire - January 3rd, 2025 [January 3rd, 2025]
- Jim Cramer talks being cautious with nuclear power and quantum computing stocks - MSN - January 3rd, 2025 [January 3rd, 2025]
- Quantum Computing Is Finally Here. But What Is It? - Bloomberg - December 27th, 2024 [December 27th, 2024]
- Should You Buy Quantum Computing Stocks in 2025? - The Motley Fool - December 27th, 2024 [December 27th, 2024]
- Rigetti Stock Doubles in Days: Here's the Quantum Computing Stock's Next Target - Money Morning - December 27th, 2024 [December 27th, 2024]