What is quantum computing?
Quantum computing is an area of study focused on the development of computer based technologies centered around the principles ofquantum theory. Quantum theory explains the nature and behavior of energy and matter on thequantum(atomic and subatomic) level. Quantum computing uses a combination ofbitsto perform specific computational tasks. All at a much higher efficiency than their classical counterparts. Development ofquantum computersmark a leap forward in computing capability, with massive performance gains for specific use cases. For example quantum computing excels at like simulations.
The quantum computer gains much of its processing power through the ability for bits to be in multiple states at one time. They can perform tasks using a combination of 1s, 0s and both a 1 and 0 simultaneously. Current research centers in quantum computing include MIT, IBM, Oxford University, and the Los Alamos National Laboratory. In addition, developers have begun gaining access toquantum computers through cloud services.
Quantum computing began with finding its essential elements. In 1981, Paul Benioff at Argonne National Labs came up with the idea of a computer that operated with quantum mechanical principles. It is generally accepted that David Deutsch of Oxford University provided the critical idea behind quantum computing research. In 1984, he began to wonder about the possibility of designing a computer that was based exclusively on quantum rules, publishing a breakthrough paper a few months later.
Quantum Theory
Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.
Quantum Theory
Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.
The Essential Elements of Quantum Theory:
Further Developments of Quantum Theory
Niels Bohr proposed the Copenhagen interpretation of quantum theory. This theory asserts that a particle is whatever it is measured to be, but that it cannot be assumed to have specific properties, or even to exist, until it is measured. This relates to a principle called superposition. Superposition claims when we do not know what the state of a given object is, it is actually in all possible states simultaneously -- as long as we don't look to check.
To illustrate this theory, we can use the famous analogy of Schrodinger's Cat. First, we have a living cat and place it in a lead box. At this stage, there is no question that the cat is alive. Then throw in a vial of cyanide and seal the box. We do not know if the cat is alive or if it has broken the cyanide capsule and died. Since we do not know, the cat is both alive and dead, according to quantum law -- in a superposition of states. It is only when we break open the box and see what condition the cat is in that the superposition is lost, and the cat must be either alive or dead.
The principle that, in some way, one particle can exist in numerous states opens up profound implications for computing.
A Comparison of Classical and Quantum Computing
Classical computing relies on principles expressed by Boolean algebra; usually Operating with a 3 or 7-modelogic gateprinciple. Data must be processed in an exclusive binary state at any point in time; either 0 (off / false) or 1 (on / true). These values are binary digits, or bits. The millions of transistors and capacitors at the heart of computers can only be in one state at any point. In addition, there is still a limit as to how quickly these devices can be made to switch states. As we progress to smaller and faster circuits, we begin to reach the physical limits of materials and the threshold for classical laws of physics to apply.
The quantum computer operates with a two-mode logic gate:XORand a mode called QO1 (the ability to change 0 into a superposition of 0 and 1). In a quantum computer, a number of elemental particles such as electrons or photons can be used. Each particle is given a charge, or polarization, acting as a representation of 0 and/or 1. Each particle is called a quantum bit, or qubit. The nature and behavior of these particles form the basis of quantum computing and quantum supremacy. The two most relevant aspects of quantum physics are the principles of superposition andentanglement.
Superposition
Think of a qubit as an electron in a magnetic field. The electron's spin may be either in alignment with the field, which is known as aspin-upstate, or opposite to the field, which is known as aspin-downstate. Changing the electron's spin from one state to another is achieved by using a pulse of energy, such as from alaser. If only half a unit of laser energy is used, and the particle is isolated the particle from all external influences, the particle then enters a superposition of states. Behaving as if it were in both states simultaneously.
Each qubit utilized could take a superposition of both 0 and 1. Meaning, the number of computations a quantum computer could take is 2^n, where n is the number of qubits used. A quantum computer comprised of 500 qubits would have a potential to do 2^500 calculations in a single step. For reference, 2^500 is infinitely more atoms than there are in the known universe. These particles all interact with each other via quantum entanglement.
In comparison to classical, quantum computing counts as trueparallel processing. Classical computers today still only truly do one thing at a time. In classical computing, there are just two or more processors to constitute parallel processing.EntanglementParticles (like qubits) that have interacted at some point retain a type can be entangled with each other in pairs, in a process known ascorrelation. Knowing the spin state of one entangled particle - up or down -- gives away the spin of the other in the opposite direction. In addition, due to the superposition, the measured particle has no single spin direction before being measured. The spin state of the particle being measured is determined at the time of measurement and communicated to the correlated particle, which simultaneously assumes the opposite spin direction. The reason behind why is not yet explained.
Quantum entanglement allows qubits that are separated by large distances to interact with each other instantaneously (not limited to the speed of light). No matter how great the distance between the correlated particles, they will remain entangled as long as they are isolated.
Taken together, quantum superposition and entanglement create an enormously enhanced computing power. Where a 2-bit register in an ordinary computer can store only one of four binary configurations (00, 01, 10, or 11) at any given time, a 2-qubit register in a quantum computer can store all four numbers simultaneously. This is because each qubit represents two values. If more qubits are added, the increased capacity is expanded exponentially.
Quantum Programming
Quantum computing offers an ability to write programs in a completely new way. For example, a quantum computer could incorporate a programming sequence that would be along the lines of "take all the superpositions of all the prior computations." This would permit extremely fast ways of solving certain mathematical problems, such as factorization of large numbers.
The first quantum computing program appeared in 1994 by Peter Shor, who developed a quantum algorithm that could efficiently factorize large numbers.
The Problems - And Some Solutions
The benefits of quantum computing are promising, but there are huge obstacles to overcome still. Some problems with quantum computing are:
There are many problems to overcome, such as how to handle security and quantum cryptography. Long time quantum information storage has been a problem in the past too. However, breakthroughs in the last 15 years and in the recent past have made some form of quantum computing practical. There is still much debate as to whether this is less than a decade away or a hundred years into the future. However, the potential that this technology offers is attracting tremendous interest from both the government and the private sector. Military applications include the ability to break encryptions keys via brute force searches, while civilian applications range from DNA modeling to complex material science analysis.
The rest is here:
What is quantum computing?
- Turkey Launches First 5-Qubit Quantum Computer, Called QuanT, Marking National Technology Breakthrough for the Country - Quantum Computing Report - November 23rd, 2024 [November 23rd, 2024]
- Toshiba and RIKEN Achieve 99.90% Fidelity with Double-Transmon Coupler for Superconducting Quantum Computers - Quantum Computing Report - November 23rd, 2024 [November 23rd, 2024]
- IBM and Pasqal to Advance Quantum-Centric Supercomputing with a Unified Framework - Quantum Computing Report - November 23rd, 2024 [November 23rd, 2024]
- Up 43% Today, This Quantum Computing Stock Has More Than Tripled In November - Barchart - November 21st, 2024 [November 21st, 2024]
- Quantum computing making leap from theoretical to practical - Hamburg Invest - November 21st, 2024 [November 21st, 2024]
- Google Unveils AlphaQubit: AI-Driven Breakthrough in Quantum Error Correction - Quantum Computing Report - November 21st, 2024 [November 21st, 2024]
- Lightsynq Comes Out of Stealth with $18 Million in Series A Funding to Scale Quantum Computing - The Quantum Insider - November 21st, 2024 [November 21st, 2024]
- How Clean Does a Quantum Computing Test Facility Need to Be? - HPCwire - November 21st, 2024 [November 21st, 2024]
- Alice & Bob Launch Dynamiqs: A GPU-Accelerated Library for High-Speed Quantum Simulations - Quantum Computing Report - November 21st, 2024 [November 21st, 2024]
- Microsoft and Atom Computing Are Taking Orders for a Fault Tolerant Quantum Computer with 1K (Physical) / 50 (Logical) Qubits for Delivery Next Year -... - November 21st, 2024 [November 21st, 2024]
- Nurturing The Emerging Ecosystem Of Industry-Academia Collaboration In Quantum Computing - NDTV Profit - November 21st, 2024 [November 21st, 2024]
- Microsoft and Atom Computing leap ahead on the quantum frontier with logical qubits - GeekWire - November 21st, 2024 [November 21st, 2024]
- Quantum Computing and the Evolving Cyber Threat Landscape - The Soufan Center - November 16th, 2024 [November 16th, 2024]
- What is quantum computing and how might it impact financial services? - Lloyds Banking Group - November 16th, 2024 [November 16th, 2024]
- Quantum Computing to sell 16M shares at $2.50 in registered direct offering - TipRanks - November 16th, 2024 [November 16th, 2024]
- How 'clean' does a quantum computing test facility need to be? - Phys.org - November 14th, 2024 [November 14th, 2024]
- Quantum Computing Shares Are Up By More Than 70%: Here's What You Need To Know - Benzinga - November 14th, 2024 [November 14th, 2024]
- In step forward for quantum computing hardware, IU physicist uncovers novel behavior in quantum-driven superconductors - IU Newsroom - November 14th, 2024 [November 14th, 2024]
- Closing in on quantum computing with error mitigation - ComputerWeekly.com - November 14th, 2024 [November 14th, 2024]
- IQM unveils roadmap focused on fault-tolerant quantum computing by 2030 - Scientific Computing World - November 14th, 2024 [November 14th, 2024]
- Quantum Computing is Coming - Is the Insurance Industry Ready? - - Insurance Edge - November 14th, 2024 [November 14th, 2024]
- Could Diamonds Unlock Improved Qubits for Quantum Computing? - Securities.io - November 14th, 2024 [November 14th, 2024]
- Enterprise Quantum Computing Market on Track for 29.7% CAGR | Key Growth Drivers and Future Opportunities - openPR - November 14th, 2024 [November 14th, 2024]
- Equal1s Quantum Computing Breakthough with Arm Technology - Arm Newsroom - November 14th, 2024 [November 14th, 2024]
- Quantum Algorithms Institute Partners with AbaQus and InvestDEFY to Enhance Financial Forecasting with Quantum Computing - Quantum Computing Report - November 14th, 2024 [November 14th, 2024]
- SemiQon and SDT Partner to Scale Quantum Computing with Silicon-Based QPUs - Quantum Computing Report - November 14th, 2024 [November 14th, 2024]
- The CIO's quantum leap into the cloud: Integrating quantum computing into cloud infrastructure - ITPro - November 14th, 2024 [November 14th, 2024]
- Massachusetts Invests $5 Million in New Quantum Computing Facility in Holyoke - This Week In Worcester - November 14th, 2024 [November 14th, 2024]
- Hamad Bin Khalifa University and Quantinuum Partner to Advance Quantum Computing in Qatar - The Quantum Insider - November 14th, 2024 [November 14th, 2024]
- Hamad Bin Khalifa University Partners with Quantinuum to Boost Quantum Computing Research in Qatar - Quantum Computing Report - November 14th, 2024 [November 14th, 2024]
- Singtel Expands Quantum-Safe Network with Palo Alto Networks and Fortinet Integration - Quantum Computing Report - November 14th, 2024 [November 14th, 2024]
- Quantum Computing Company to Part With General Counsel - Law.com - November 12th, 2024 [November 12th, 2024]
- Researchers from the University of Sydney demonstrate more effieicnt quantum error correction - Scientific Computing World - November 12th, 2024 [November 12th, 2024]
- Quantum computing will be the next big tech trend to have a major impact on marketing, says Citi CMO Alex Craddock - Business Insider - November 10th, 2024 [November 10th, 2024]
- A Look At The Official Opening of UKs National Quantum Computing Centre - The Quantum Insider - November 10th, 2024 [November 10th, 2024]
- IonQ Partners with imec to Advance Quantum Computing with Photonic Integrated Circuits and Chip-Scale Ion Traps - Quantum Computing Report - November 10th, 2024 [November 10th, 2024]
- BTQ Technologies and Macquarie University Partner to Drive Quantum Computing and Secure Communications - Quantum Computing Report - November 10th, 2024 [November 10th, 2024]
- IonQ to Acquire the Assets of Qubitekk to Strengthen Its Position in Quantum Networking Technology - Quantum Computing Report - November 10th, 2024 [November 10th, 2024]
- From nuclear to quantum computing, how Big Tech intends to power AI's insatiable thirst for energy - CNBC - November 10th, 2024 [November 10th, 2024]
- Quantum Computing and Critical Infrastructure - The Quantum Insider - October 16th, 2024 [October 16th, 2024]
- A Superconducting Waltz: Elia Strambini on the Quantum Future of Computing - The Quantum Insider - October 16th, 2024 [October 16th, 2024]
- Quantum computing and photonics discovery potentially shrinks critical parts by 1,000 times - Phys.org - October 16th, 2024 [October 16th, 2024]
- Nu Quantum Announces the Qubit-Photon Interface for Modular and Scalable Distributed Quantum Computing - The Quantum Insider - October 16th, 2024 [October 16th, 2024]
- How to Invest in Quantum Computing Companies (Updated 2024) - Investing News Network - October 16th, 2024 [October 16th, 2024]
- IBM pitches camp in Germany to prepare Quantum Computing for the real world - diginomica - October 16th, 2024 [October 16th, 2024]
- Purifications, Fidelity & the Future of Computing - The Quantum Insider - October 16th, 2024 [October 16th, 2024]
- Making quantum computing more accessible and applicable to real-world challenges - Scientific Computing World - October 16th, 2024 [October 16th, 2024]
- The future of quantum computing and cybersecurity in telecommunications - Telefnica - October 16th, 2024 [October 16th, 2024]
- Chinese Quantum Computing Threat Highlights Urgency for Quantum eMotion's Quantum Security Solutions - Newsfile - October 16th, 2024 [October 16th, 2024]
- Qunova Computing Achieves Chemical Accuracy in Quantum Chemistry Simulations with Innovative Hardware-Agnostic Algorithm on NISQ Devices - Quantum... - October 16th, 2024 [October 16th, 2024]
- Quantum Computing Transformed by Breakthrough Photonic Technology - SciTechDaily - October 12th, 2024 [October 12th, 2024]
- How Is Quantum Computing Being Used in Healthcare? - HealthTech Magazine - October 12th, 2024 [October 12th, 2024]
- IBM Quantum Roadmap Guide -- Scaling And Expanding The Usefulness of Quantum Computing - The Quantum Insider - October 12th, 2024 [October 12th, 2024]
- Toyota and Xanadu Partner to Bring Quantum Computing to Advanced Materials Science and Sensing Applications - The Quantum Insider - October 12th, 2024 [October 12th, 2024]
- 'Invisibility' and quantum computing tipped for physics Nobel - Yahoo! Voices - October 12th, 2024 [October 12th, 2024]
- Airbus Selects Multiverse Computing to Build Quantum-inspired Gesture Recognition Software For Fighter Pilots - The Quantum Insider - October 12th, 2024 [October 12th, 2024]
- From Legacy to Innovation: Banks' Path to Cloud, AI, and Quantum Computing - Finextra - October 12th, 2024 [October 12th, 2024]
- IBM Executive Stories: Bringing Useful Quantum Computing to the World - IBM - October 7th, 2024 [October 7th, 2024]
- Quantum Computing Market to Soar to $7.1B by 2031 with 30.7% CAGR - openPR - October 7th, 2024 [October 7th, 2024]
- Quantum Computing Market Is Going to Boom | Major Giants IBM, Google, Rigetti, Microsoft, Intel - openPR - October 7th, 2024 [October 7th, 2024]
- Will IBM's Focus on Quantum Computing Propel the Stock? - Yahoo Finance - October 7th, 2024 [October 7th, 2024]
- Nu Quantums Platform For Networking Quantum Computers Hosted at The UK's National Quantum Computing Centre - The Quantum Insider - October 7th, 2024 [October 7th, 2024]
- Quantum Computing for Real-world Applications with Professor Naoki Yamamoto of Keio University - The Quantum Insider - October 7th, 2024 [October 7th, 2024]
- University of Queensland (UQ) is Receiving $29 million AUD ($19.7M USD) in Funding for Quantum Research and Scholarships - Quantum Computing Report - October 7th, 2024 [October 7th, 2024]
- History of quantum computing: 12 key moments that shaped the future of computers - Livescience.com - October 3rd, 2024 [October 3rd, 2024]
- Quantum Sensors: Atom Interferometry. Part 3: Space is the Place - Quantum Computing Report - October 3rd, 2024 [October 3rd, 2024]
- D-Wave and Japan Tobacco Collaborate on a Quantum AI-Driven Drug Discovery Proof-of-Concept - Quantum Computing Report - October 3rd, 2024 [October 3rd, 2024]
- March-Ins on Quantum Computing is the Newest of Threats to Free Enterprise - ShortGo - October 3rd, 2024 [October 3rd, 2024]
- Quantum computing and the future of cryptography: Understanding the imminent threat - Backend News - October 3rd, 2024 [October 3rd, 2024]
- Quantum for AI: Weather Forecasting. Are we There Yet? - Quantum Computing Report - September 28th, 2024 [September 28th, 2024]
- US Implements Controls on Quantum Computing and other Technologies - HPCwire - September 28th, 2024 [September 28th, 2024]
- IBM opens its quantum-computing stack to third parties - Ars Technica - September 28th, 2024 [September 28th, 2024]
- G7 cyber group warns financial sector to prep for quantum computing risks - The Record from Recorded Future News - September 28th, 2024 [September 28th, 2024]
- IonQ Signs a $54.5 Million Contract with AFRL for Research in Both Quantum Computing and Quantum Networking - Quantum Computing Report - September 28th, 2024 [September 28th, 2024]
- Quantum computing what you need to know - Information Age - September 28th, 2024 [September 28th, 2024]
- AI and Quantum Computing Form Strong Bond to Power Materials Discovery Innovation -- SandboxAQ, EY Researchers Report - The Quantum Insider - September 28th, 2024 [September 28th, 2024]
- University of Iowa Technology Institute researcher secures nearly $1 million grant to advance quantum computing - Corridor Business - September 28th, 2024 [September 28th, 2024]
- Quantum Computing vs. Blockchain: Will It Break the System? - CCN.com - September 28th, 2024 [September 28th, 2024]
- The Pervasiveness of Machine Learning in Quantum Technology - Quantum Computing Report - September 28th, 2024 [September 28th, 2024]
- BlueQubit Launches Plugin for Pennylane to Enable Quantum Simulations on BlueQubits Platform - Quantum Computing Report - September 28th, 2024 [September 28th, 2024]