Will Quantum Computing Really Change The World? Facts And Myths – Analytics India Magazine
In recent years, some big tech companies like IBM, Microsoft, Intel, or Google have been working in relative silence on something that sounds great: quantum computing. The main problem with this is that it is difficult to know what exactly it is and what it can be useful for.
There are some questions that can be easily solved. For example, quantum computing is not going to help you have more FPS on your graphics card at the moment. Nor will it be as easy as changing the CPU of your computer for a quantum to make it hyperfast. Quantum computing is fundamentally different from the computing we are used to, but how?
At the beginning of the 20th century, Planck and Einstein proposed that light is not a continuous wave (like the waves in a pond) but that it is divided into small packages or quanta. This apparently simple idea served to solve a problem called the ultraviolet catastrophe. But over the years other physicists developed it and came to surprising conclusions about the matter, of which we will be interested in two: the superposition of states and entanglement.
To understand why we are interested, lets take a short break and think about how a classic computer works. The basic unit of information is the bit, which can have two possible states (1 or 0) and with which we can perform various logical operations (AND, NOT, OR). Putting together n bits we can represent numbers and operate on those numbers, but with limitations: we can only represent up to 2 different states, and if we want to change x bits we have to perform at least x operations on them: there is no way to magically change them without touching them.
Well, superposition and entanglement allow us to reduce these limitations: with superposition, we can store many more than just 2 ^ n states with n quantum bits (qubits), and entanglement maintains certain relations between qubits in such a way that the operations in one qubit they forcefully affect the rest.
Overlapping, while looking like a blessing at first glance, is also a problem. As Alexander Holevo showed in 1973, even though we have many more states than we can save in n qubits, in practice we can only read 2 ^ n different ones. As we saw in an article in Genbeta about the foundations of quantum computing: a qubit is not only worth 1 or 0 as a normal bit, but it can be 1 in 80% and 0 in 20%. The problem is that when we read it we can only obtain either 1 or 0, and the probabilities that each value had of leaving are lost because when we measured it we modified it.
This discrepancy between the information kept by the qubits and what we can read led Benioff and Feynman to demonstrate that a classical computer would not be able to simulate a quantum system without a disproportionate amount of resources, and to propose models for a quantum computer that did. was able to do that simulation.
Those quantum computers would probably be nothing more than a scientific curiosity without the second concept, entanglement, which allows two quite relevant algorithms to be developed: quantum tempering in 1989 and Shors algorithm in 1994. The first allows finding minimum values of functions, which So said, it does not sound very interesting but it has applications in artificial intelligence and machine learning, as we discussed in another article. For example, if we manage to code the error rate of a neural network as a function to which we can apply quantum quenching, that minimum value will tell us how to configure the neural network to be as efficient as possible.
The second algorithm, the Shor algorithm, helps us to decompose a number into its prime factors much more efficiently than we can achieve on a normal computer. So said, again, it doesnt sound at all interesting. But if I tell you that RSA, one of the most used algorithms to protect and encrypt data on the Internet, is based on the fact that factoring numbers are exponentially slow (adding a bit to the key implies doubling the time it takes to do an attack by force) then the thing changes. A quantum computer with enough qubits would render many encryption systems completely obsolete.
Until now, quantum computing is a field that hasnt been applied much in the real world. To give us an idea, with the twenty qubits of the commercial quantum computer announced by IBM, we could apply Shors factorization algorithm only to numbers less than 1048576, which as you can imagine is not very impressive.
Still, the field has a promising evolution. In 1998 the first ord quantum drive (only two qubits, and needed a nuclear magnetic resonance machine to solve a toy problem (the so-called Deutsch-Jozsa problem). In 2001 Shors algorithm was run for the first time. Only 6 years later, in 2007, D-Wave presented its first computer capable of executing quantum quenching with 16 qubits. This year, the same company announced a 2000 qubit quantum quenching computer. On the other hand, the new IBM computers, although with fewer qubits, they are able to implement generic algorithms and not only that of quantum quenching. In short, it seems that the push is strong and that quantum computing will be increasingly applicable to real problems.
What can those applications be? As we mentioned before, the quantum tempering algorithm is very appropriate for machine learning problems, which makes the computers that implement it extremely useful, although the only thing they can do is run that single algorithm. If systems can be developed that, for example, are capable of transcribing conversations or identifying objects in images and can be translated to train them in quantum computers, the results could be orders of magnitude better than those that already exist. The same algorithm could also be used to find solutions to problems in medicine or chemistry, such as finding the optimal treatment methods for a patient or studying the possible structures of complex molecules.
Generic quantum computers, which have fewer qubits right now, could run more algorithms. For example, they could be used to break much of the crypto used right now as we discussed earlier (which explains why the NSA wanted to have a quantum computer). They would also serve as super-fast search engines if Grovers search algorithm can be implemented, and for physics and chemistry, they can be very useful as efficient simulators of quantum systems.
Unfortunately, algorithms and codes for classic computers couldnt be used on quantum computers and magically get an improvement in speed: you need to develop a quantum algorithm (not a trivial thing) and implement it in order to get that improvement. That, at first, greatly restricts the applications of quantum computers and will be a problem to overcome when those systems are more developed.
However, the main problem facing quantum computing is building computers. Compared to a normal computer, a quantum computer is an extremely complex machine: they operate at a temperature close to absolute zero (-273 C), the qubits support are superconducting and the components to be able to read and manipulate the qubits are not simple either.
What can a non-quantum quantum computer be like? As we have explained before, the two relevant concepts of a quantum computer are superposition and entanglement, and without them, there cannot be the speed improvements that quantum algorithms promise. If computer disturbances modify overlapping qubits and bring them to classical states quickly, or if they break the interweaving between several qubits, what we have is not a quantum computer but only an extremely expensive computer that only serves to run a handful of algorithms. equivalent to a normal computer (and will probably give erroneous results).
Of the two properties, entanglement is the most difficult to maintain and prove to exist. The more qubits there are, the easier it is for one of them to deinterlace (which explains why increasing the number of qubits is not a trivial task). And it is not enough to build the computer and see that correct results come out to say that there are intertwined qubits: looking for evidence of entanglement is a task in itself and in fact, the lack of evidence was one of the main criticisms of D-systems. Wave in its beginnings.
A priori and with the materials that quantum computers are being built with, it does not seem that miniaturization is too feasible. But there is already research on new materials that could be used to create more accessible quantum computers. Who knows if fifty years from now we will be able to buy quantum CPUs to improve the speed of our computers.
comments
Link:
Will Quantum Computing Really Change The World? Facts And Myths - Analytics India Magazine
- Prediction: These 2 Quantum Computing Stocks Will Be the Biggest AI Winners of 2025 - Yahoo Finance - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - The Motley Fool - February 20th, 2025 [February 20th, 2025]
- Quantum Watch: 3 Quantum Computing Startups Set to Disrupt the Industry - TipRanks - February 20th, 2025 [February 20th, 2025]
- D-Wave, IonQ and Quantum Computing Stocks Pop: What's Driving the Momentum? - Benzinga - February 20th, 2025 [February 20th, 2025]
- Microsoft quantum breakthrough promises to usher in the next era of computing in 'years, not decades' - GeekWire - February 20th, 2025 [February 20th, 2025]
- Microsoft claims practical quantum computing could be ready in 'years rather than decades' with new computer chip - Fortune - February 20th, 2025 [February 20th, 2025]
- Microsoft unveils chip it says could bring quantum computing within years - The Guardian - February 20th, 2025 [February 20th, 2025]
- Microsoft created a new type of matter for its quantum computing chip - Quartz - February 20th, 2025 [February 20th, 2025]
- Kipu Quantum and IBM Introduce New Optimization Function in Qiskit Functions Catalog - Quantum Computing Report - February 20th, 2025 [February 20th, 2025]
- Microsoft reveals its first quantum computing chip, the Majorana 1 - MSN - February 20th, 2025 [February 20th, 2025]
- How Microsoft is rewriting the rules of reality with quantum computing - Interesting Engineering - February 20th, 2025 [February 20th, 2025]
- Microsoft Makes Quantum Computing Breakthrough With New Chip - The New Stack - February 20th, 2025 [February 20th, 2025]
- Should the Government Fund a Manhattan Project for Quantum Computing? - Built In - February 20th, 2025 [February 20th, 2025]
- This Quantum Computing Stock Just Announced a Key New Sales Strategy and Its First Customer - Barchart - February 20th, 2025 [February 20th, 2025]
- HPE launches slew of Xeon-based Proliant servers which claim to be impervious to quantum computing threats - TechRadar - February 20th, 2025 [February 20th, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 4% - Here's What Happened - MarketBeat - February 20th, 2025 [February 20th, 2025]
- 4 AI Stocks to Watch in the Quantum Computing Revolution - MSN - February 20th, 2025 [February 20th, 2025]
- The Next Big Thing in Quantum Computing: 3 Startups to Watch - PUNE.NEWS - February 20th, 2025 [February 20th, 2025]
- Quantum Computing Is Closer Than Ever. Everybodys Too Busy to Pay Attention. - The Wall Street Journal - February 14th, 2025 [February 14th, 2025]
- Practical Quantum Computing Five to Ten Years Away: Google CEO - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- Oxford scientists say they have achieved teleportation - The Independent - February 14th, 2025 [February 14th, 2025]
- D-Wave Quantum Announces Another Sale. Its a Milestone in Quantum Computing. - Barron's - February 14th, 2025 [February 14th, 2025]
- This Canadian company is out to stop the biggest quantum computing threat - The Logic - February 14th, 2025 [February 14th, 2025]
- QphoX, Rigetti, and Qblox Demonstrate Optical Readout Technique for Superconducting Qubits - Quantum Computing Report - February 14th, 2025 [February 14th, 2025]
- Quantum computing is already here, experts say - DIGITIMES - February 14th, 2025 [February 14th, 2025]
- FS-ISAC Releases Guidance to Help the Payment Card Industry Mitigate Risks of Quantum Computing - The Quantum Insider - February 14th, 2025 [February 14th, 2025]
- Quantum Corporation: Improved Results, But Still Not A Quantum Computing Play - Sell - Seeking Alpha - February 14th, 2025 [February 14th, 2025]
- Why AI firms should follow the example of quantum computing research - New Scientist - February 14th, 2025 [February 14th, 2025]
- Unlocking the Future: IonQ Revolutionizes Quantum Computing at CES 2025! - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Billionaire Bill Gates Thinks Quantum Computing Could Be Ready for Prime Time Within 3 to 5 Years. Could Nvidia Be in Trouble If He's Right? - The... - February 14th, 2025 [February 14th, 2025]
- Quantum Computing in 2025: Will the Asia Pacific Continue Its Advancement? - Telecom Review Asia - February 14th, 2025 [February 14th, 2025]
- Is D-Wave the Future of Computing? Discover the Quantum Leap! - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Revolutionizing Computing: The Rise of D-Wave! The Future of Quantum Technology - Jomfruland.net - February 14th, 2025 [February 14th, 2025]
- Quantum computing startup OQT announced on the 13th that it has attracted 3 billion won worth of see.. - - February 12th, 2025 [February 12th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- 3 Top-Rated Quantum Computing Stocks To Buy In February 2025 - Barchart - February 12th, 2025 [February 12th, 2025]
- Quantum Computing Breakthrough Brings Us Closer to Universal Simulation - SciTechDaily - February 12th, 2025 [February 12th, 2025]
- Allston quantum computing firm plans to nearly double workforce - The Boston Globe - February 12th, 2025 [February 12th, 2025]
- Quantum Computing: A Beginners Guide to Understanding the Next Revolution - TipRanks - February 12th, 2025 [February 12th, 2025]
- Want to Invest in Quantum Computing? 1 Stock That Is a Great Buy Right Now. - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- 2 Top Quantum Computing Stocks to Buy in February - The Motley Fool - February 12th, 2025 [February 12th, 2025]
- Oxford quantum teleportation breakthrough brings scalable quantum computing closer to reality - Innovation News Network - February 12th, 2025 [February 12th, 2025]
- Preparing for a Quantum Computing Nightmare on the Stock Exchange: What Is Q-Day? - TipRanks - February 12th, 2025 [February 12th, 2025]
- Are Quantum Computing Stocks Worth The Investment? - Seeking Alpha - February 12th, 2025 [February 12th, 2025]
- 7 Best Quantum Computing Stocks to Buy in 2025 | Investing - U.S News & World Report Money - February 12th, 2025 [February 12th, 2025]
- Quantum computing will bring lost Bitcoin 'back in circulation Tether CEO - Cointelegraph - February 12th, 2025 [February 12th, 2025]
- Tether CEO predicts quantum computing could recover lost Bitcoin - crypto.news - February 12th, 2025 [February 12th, 2025]
- Tether CEO Paolo Ardoino Says Quantum Computing Will Allow Hackers To Take Bitcoin From Lost Wallets - The Daily Hodl - February 12th, 2025 [February 12th, 2025]
- Quantum computing wont kill Bitcoin but it might unlock Satoshis wallet, says Tether CEO - DLNews - February 12th, 2025 [February 12th, 2025]
- Partnership Delivers Scalable Quantum Computing with QEC Capability - EE Times - February 7th, 2025 [February 7th, 2025]
- PsiQuantum and Microsoft Selected to Move on to the Final Validation and Co-Design Stage of DARPAs Underexplored Systems for Utility-Scale Quantum... - February 7th, 2025 [February 7th, 2025]
- Google targets commercial quantum computing within five years - Dig Watch Updates - February 7th, 2025 [February 7th, 2025]
- Googles Quantum Computing Chief Challenges Nvidias Jensen Huangs 20-Year Timeline: 'Within Five Years Well See Real-World Applications That Are... - February 7th, 2025 [February 7th, 2025]
- Quantum Leap or Market Mirage? D-Wave Stock and the Future of Computing - Mi Valle - February 7th, 2025 [February 7th, 2025]
- The Promises and Pitfalls of Quantum Computing in Chicago - Illinois Answers Project - February 7th, 2025 [February 7th, 2025]
- Quantum Computing in Smaller Bytes, Thanks to Fordham Students Invention - Fordham University - February 7th, 2025 [February 7th, 2025]
- Is IonQ the Golden Ticket in Quantum Computing or Just a Risky Gamble? - Jomfruland.net - February 7th, 2025 [February 7th, 2025]
- Is IonQ the Future of Quantum Computing or Just a Risky Gamble? - Jomfruland.net - February 7th, 2025 [February 7th, 2025]
- D-Wave, Quantum Computing, and Rigetti Stock Slip on Trade War Fears - Barron's - February 7th, 2025 [February 7th, 2025]
- Discover the Next Wave of Quantum Computing Shares: Are They Worth the Investment? - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Unlocking the Future: How Rigetti, IonQ, and D-Wave Are Pioneering Quantum Computing - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Discover the Next Wave of Quantum Computing Stocks: Are They Worth the Investment? - Mi Valle - February 7th, 2025 [February 7th, 2025]
- Google says commercial quantum computing applications arriving within five years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - Reuters - February 5th, 2025 [February 5th, 2025]
- The necessary next step for quantum and high-performance computing is sustainability, Northeastern experts say - Northeastern University - February 5th, 2025 [February 5th, 2025]
- Bill Gates: There's a possibility quantum computing will become useful in 3 to 5 years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google Bets on Quantum Computing, Aims for Commercial Use in Five Years - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Quantum Computing Stocks Tumbled in January. Should You Buy the Dip? - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Bill Gates Predicts Useful Quantum Computing Is 3 to 5 Years Away - IoT World Today - February 5th, 2025 [February 5th, 2025]
- Intel (NASDAQ:INTC), Japanese Government Working Together on Quantum Computing Development - TipRanks - February 5th, 2025 [February 5th, 2025]
- Interested in Investing in Quantum Computing Stocks? Here's a No-Brainer Buy. - The Motley Fool - February 5th, 2025 [February 5th, 2025]
- Quobly Opens a New Quantum Chip Test/Characterization Facility and Expanded Offices - Quantum Computing Report - February 5th, 2025 [February 5th, 2025]
- SEALSQ (LAES) Invests $20M in AI and Quantum Computing Startups - Yahoo Finance - February 5th, 2025 [February 5th, 2025]
- Google says quantum computing applications are five years away - Digital Trends - February 5th, 2025 [February 5th, 2025]
- Google (GOOGL) Aims to Release Commercial Quantum Computing Apps Within Five Years - TipRanks - February 5th, 2025 [February 5th, 2025]
- Quantum Leap: Is Rigetti Computing the Next Tech Sensation? - Jomfruland.net - February 5th, 2025 [February 5th, 2025]
- Google Bets on Quantum Computing, Aims for Commercial Use in Fiv - GuruFocus.com - February 5th, 2025 [February 5th, 2025]
- Quantum Computing at the BMW Group. - BMW Group - February 5th, 2025 [February 5th, 2025]
- Google says commercial quantum computing applications arriving within five years - TradingView - February 5th, 2025 [February 5th, 2025]
- D-Wave Launches "Quantum Realized" Brand Campaign to Illustrate Benefits of Todays Quantum Computing - Yahoo Finance - February 5th, 2025 [February 5th, 2025]