System – Wikipedia, the free encyclopedia

A system is a set of interacting or interdependent components forming an integrated whole.[1]

Every system is delineated by its spatial and temporal boundaries, surrounded and influenced by its environment, described by its structure and purpose and expressed in its functioning.

Fields that study the general properties of systems include systems science, systems theory, systems modeling, systems engineering, cybernetics, dynamical systems, thermodynamics, complex systems, system analysis and design and systems architecture. They investigate the abstract properties of systems' matter and organization, looking for concepts and principles that are independent of domain, substance, type, or temporal scale.[citation needed]

Some systems share common characteristics, including:[citation needed]

The term system may also refer to a set of rules that governs structure and/or behavior. Alternatively, and usually in the context of complex social systems, the term institution is used to describe the set of rules that govern structure and/or behavior.

The term is from the Latin word systma, in turn from Greek systma, "whole compounded of several parts or members, system", literary "composition"[2]

"System" means "something to look at". You must have a very high visual gradient to have systematization. In philosophy, before Descartes, there was no "system". Plato had no "system". Aristotle had no "system".[3]

In the 19th century the first to develop the concept of a "system" in the natural sciences was the French physicist Nicolas Lonard Sadi Carnot who studied thermodynamics. In 1824 he studied the system which he called the working substance, i.e. typically a body of water vapor, in steam engines, in regards to the system's ability to do work when heat is applied to it. The working substance could be put in contact with either a boiler, a cold reservoir (a stream of cold water), or a piston (to which the working body could do work by pushing on it). In 1850, the German physicist Rudolf Clausius generalized this picture to include the concept of the surroundings and began to use the term "working body" when referring to the system.

One of the pioneers of the general systems theory was the biologist Ludwig von Bertalanffy. In 1945 he introduced models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relation or 'forces' between them.[4]

Significant development to the concept of a system was done by Norbert Wiener and Ross Ashby who pioneered the use of mathematics to study systems.[5][6]

Here is the original post:
System - Wikipedia, the free encyclopedia

Related Posts

Comments are closed.